A131466 a(n) = 5n^4 - 4n^3 + 3n^2 - 2n + 1.
1, 3, 57, 319, 1065, 2691, 5713, 10767, 18609, 30115, 46281, 68223, 97177, 134499, 181665, 240271, 312033, 398787, 502489, 625215, 769161, 936643, 1130097, 1352079, 1605265, 1892451, 2216553, 2580607, 2987769, 3441315
Offset: 0
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (5, -10, 10, -5, 1).
Programs
-
Mathematica
Table[5n^4-4n^3+3n^2-2n+1,{n,0,30}] (* or *) LinearRecurrence[{5,-10,10,-5,1},{1,3,57,319,1065},30] (* Harvey P. Dale, Nov 01 2020 *)
-
PARI
a(n)=5*n^4-4*n^3+3*n^2-2*n+1 \\ Charles R Greathouse IV, Oct 21 2022
Formula
From Chai Wah Wu, Nov 13 2018: (Start)
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n > 4.
G.f.: (-15*x^4 - 54*x^3 - 52*x^2 + 2*x - 1)/(x - 1)^5. (End)