cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A131606 Triangle read by rows: row n gives coefficients of the polynomial p(x, n) = Sum[Fibonacci[n]^i*x^(n - i), {i, 0, n}].

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 8, 4, 2, 1, 81, 27, 9, 3, 1, 3125, 625, 125, 25, 5, 1, 262144, 32768, 4096, 512, 64, 8, 1, 62748517, 4826809, 371293, 28561, 2197, 169, 13, 1, 37822859361, 1801088541, 85766121, 4084101, 194481, 9261, 441, 21, 1, 60716992766464
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, May 27 2008

Keywords

Comments

Row sums give A131612.

Examples

			Triangle begins:
{1},
{1, 1},
{1, 1, 1},
{8, 4, 2, 1},
{81, 27, 9, 3, 1},
{3125, 625, 125, 25, 5, 1},
{262144, 32768, 4096, 512, 64, 8, 1},
{62748517, 4826809, 371293, 28561, 2197, 169, 13, 1},
{37822859361, 1801088541, 85766121, 4084101, 194481, 9261, 441, 21, 1},
{60716992766464, 1785793904896, 52523350144, 1544804416, 45435424, 1336336, 39304, 1156, 34, 1},
{253295162119140625, 4605366583984375, 83733937890625, 1522435234375, 27680640625, 503284375, 9150625, 166375, 3025, 55, 1}
		

Crossrefs

Programs

  • Mathematica
    Clear[p, a] a[n_] = Fibonacci[n]; p[x, 0] = 1; p[x_, n_] := p[x, n] = Sum[a[n]^i*x^(n - i), {i, 0, n}]; Table[p[x, n], {n, 0, 10}]; a0 = Table[CoefficientList[p[x, n], x], {n, 0, 10}]; Flatten[a0] Table[Apply[Plus, CoefficientList[p[x, n], x]], {n, 0, 10}]

Extensions

Edited by N. J. A. Sloane, May 27 2008

A131612 (Fibonacci(n)^(n+1)-1)/(Fibonacci(n)-1).

Original entry on oeis.org

1, 2, 3, 15, 121, 3906, 299593, 67977560, 39714002329, 62556901638175, 257985813269495081, 2806709131423433412540, 80052769211806164721787281, 5990939163682951316587217125254, 1174714712853607653027182667701045767, 603476089599958368340121395090311986863711
Offset: 0

Views

Author

Roger L. Bagula and Gary W. Adamson, May 27 2008

Keywords

Comments

Row sums of A131606 and A131609.

Programs

  • Mathematica
    f[n_]:=Module[{fn=Fibonacci[n]},(fn^(n+1)-1)/(fn-1)]; Join[{1,2,3},f/@Range[3,20]]  (* Harvey P. Dale, Mar 01 2011 *)

Extensions

Edited by N. J. A. Sloane, May 28 2008
Showing 1-2 of 2 results.