cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131622 Number of cycles in all permutations of n elements with distinct cycle lengths.

Original entry on oeis.org

1, 1, 8, 22, 124, 948, 6138, 50832, 468144, 5165280, 54704880, 695854080, 9016051680, 130427750880, 1994479744320, 32575206343680, 555499414471680, 10284817657927680, 196642556903116800, 3994718386866278400, 84989047758544742400, 1895851170953432985600
Offset: 1

Views

Author

Vladeta Jovovic, Sep 02 2007

Keywords

Crossrefs

Programs

  • Maple
    A131622 := proc(n) local su,i ; su := add(x^i/(i+x^i),i=1..n+1) ; for i from 1 to n do su := taylor(su*(1+x^i/i),x=0,n+1) ; od: n!*coeftayl(su,x=0,n) ; end: seq(A131622(n),n=1..30) ; # R. J. Mathar, Oct 25 2007
    # second Maple program:
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, 0, `if`(i>n, 0, (p->[0, p[1]]+p)(
           b(n-i, i-1)*binomial(n, i)*(i-1)!))+b(n, i-1)))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=1..30);  # Alois P. Heinz, May 14 2016
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0, {1, 0}, If[i < 1, {0, 0}, If[i > n, {0, 0}, Function[p, {0, p[[1]]} + p][b[n-i, i-1] Binomial[n, i] (i-1)!]] + b[n, i-1]]];
    a[n_] := b[n, n][[2]];
    Array[a, 30] (* Jean-François Alcover, May 22 2020, after Alois P. Heinz *)
    nmax = 30; Rest[CoefficientList[Series[Sum[x^k/(k + x^k), {k, 1, nmax}] * Product[1 + x^k/k, {k, 1, nmax}], {x, 0, nmax}], x] * Range[0, nmax]!] (* Vaclav Kotesovec, May 22 2020 *)

Formula

E.g.f.: Sum(x^n/(n+x^n), n=1..inf) * Product(1+x^n/n, n=1..inf).

Extensions

More terms from R. J. Mathar, Oct 25 2007