A131639 Numbers n such that the sum of all numbers formed by deleting one digit from n is equal to n.
1729404, 1800000, 13758846, 13800000, 14358846, 14400000, 15000000, 28758846, 28800000, 29358846, 29400000, 1107488889, 1107489042, 1111088889, 1111089042, 3277800000, 3281400000, 4388888889, 4388889042, 4392488889, 4392489042, 4500000000, 5607488889, 5607489042, 5611088889, 5611089042, 7777800000, 7781400000, 8888888889, 8888889042, 8892488889, 8892489042, 10000000000, 20000000000, 30000000000, 40000000000, 50000000000, 60000000000, 70000000000, 80000000000, 90000000000
Offset: 1
Examples
First term is 1729404 because sum(1729404) = 729404 + 129404 + 179404 + 172404 + 172904 + 172944 + 172940 = 1729404.
Crossrefs
Cf. A093882.
Programs
-
PARI
isok(n)=d = digits(n); if (sumdigits(n)*(#d-2) % 9 , return (0)); s = 0; for (i=1, #d, nd = vector(#d-1, j, if (i > j, d[j], d[j+1])); s += subst(Pol(nd), x, 10);); s == n; \\ Michel Marcus, Apr 24 2014
Formula
For a number with n digits there are n substrings generated by removing one digit from the original number. So for 12345, these are 2345, 1345, 1245, 1235, 1234. Sum(x) is defined as the sum of these substrings for a number x and the sequence above is those numbers such that sum(x) = x.
Extensions
a(12)-a(22) from Donovan Johnson, Jan 16 2011
a(23)-a(41) from Anthony Sand, Apr 24 2014
Comments