A131657 For n >= 1, put A_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j and B_n(z) = Sum_{j>=0} (n*j)!/(j!^n) * z^j * (Sum_{k=1..j*n} (1/k)), and let b(n) be the largest integer for which exp(B_n(z)/(b(n)*A_n(z))) has integral coefficients. The sequence is b(n).
1, 1, 1, 2, 2, 36, 36, 144, 144, 1440, 1440, 17280, 17280, 241920, 3628800, 29030400, 29030400, 1567641600, 1567641600, 783820800000, 9876142080000, 651825377280000, 217275125760000, 8691005030400000
Offset: 1
Keywords
Examples
From _Petros Hadjicostas_, May 24 2020: (Start) To illustrate the Krattenhaler-Rivoal conjecture consider the case n = 24. Then H_24 = Sum_{k=1..24} 1/k = 1347822955/356948592 and {p <= 24} = {2, 3, 5, 7, 11, 13, 17, 19, 23} with {v_p(numerator): p <= 24} = {0, 0, 1, 0, 0, 0, 0, 0, 0} and {v_p(denominator): p <= 24} = {4, 1, 0, 1, 1, 1, 1, 1, 1}. Thus, the conjectured value for a(24) is 24! * (2^(0-4) * 3^(0-1) * 5^(1-0) * 7^(0-1) * 11^(0-1) * 13^(0-1) * 17^(0-1) * 19^(0-1) * 23^(0-1)) since no exponent of a prime is > 2. This product equals 8691005030400000 = a(24). (End)
Links
- Christian Krattenthaler, Table of n, a(n) for n = 1..40
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, arXiv:0709.1432 [math.NT], 2007-2009.
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, II, Communications in Number Theory and Physics, 3(3) (2009), 555-591. [Part II appeared before Part I.]
- Christian Krattenthaler and Tanguy Rivoal, On the integrality of the Taylor coefficients of mirror maps, Duke Math. J. 151(2) (2010), 175-218.
Formula
A formula, conditional on a widely believed conjecture, can be found in Theorem 3 with k = 1 in the article by Krattenthaler and Rivoal (2007-2009) cited in the references; see the remarks before Theorem 4 in that article.
Comments