cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131661 Number of compositions of n such that the cardinality of the set of parts is 2.

Original entry on oeis.org

0, 0, 2, 5, 14, 22, 44, 68, 107, 172, 261, 396, 606, 950, 1414, 2238, 3418, 5411, 8368, 13297, 20840, 33268, 52549, 84120, 133775, 214611, 343025, 551064, 883600, 1421767, 2284870, 3680296, 5924725, 9551161, 15393855, 24834827, 40061700
Offset: 1

Views

Author

Vladeta Jovovic, Sep 13 2007

Keywords

Crossrefs

Column k=2 of A235998.
Cf. A242900 (with distinct multiplicities).

Programs

  • Maple
    with(numtheory):
    a:= n-> add(add(add(binomial(j+(n-i*j)/d, j), d=select(x->xAlois P. Heinz, Feb 01 2014
  • Mathematica
    Rest@ CoefficientList[ Series[ Sum[ x^(i + j)*(x^i + x^j - 2)/((x^i - 1)*(x^j - 1)*(x^i + x^j - 1)), {i, 2, 37}, {j, i - 1}], {x, 0, 37}], x] (* Robert G. Wilson v, Sep 16 2007 *)

Formula

G.f.: Sum(Sum(x^(i+j)*(x^i+x^j-2)/((x^i-1)*(x^j-1)*(x^i+x^j-1)), j=1..i-1), i=2..infinity).
a(n) ~ 1/sqrt(5) * ((1+sqrt(5))/2)^(n+1). - Vaclav Kotesovec, May 01 2014

Extensions

More terms from Robert G. Wilson v, Sep 16 2007