A131691 Real fixed point of the function sin(cos(x)) between x=0 and x=1.
6, 9, 4, 8, 1, 9, 6, 9, 0, 7, 3, 0, 7, 8, 7, 5, 6, 5, 5, 7, 8, 4, 2, 0, 0, 7, 2, 7, 7, 5, 1, 9, 3, 7, 6, 2, 6, 8, 5, 5, 0, 4, 4, 4, 6, 7, 3, 5, 9, 3, 7, 9, 6, 8, 3, 7, 0, 0, 7, 7, 0, 9, 5, 4, 8, 1, 7, 2, 1, 5, 1, 9, 7, 3, 3, 8, 3, 9, 7, 1, 2, 4, 1, 9, 9, 2, 6, 7, 4, 4, 1, 0, 6, 8, 1, 7, 8, 6, 0, 0, 6
Offset: 0
Examples
Let k = 0.5 radians; then f(0) = k = 0.5; f(1) = sin(cos(0.5)) = 0.76919...; f(2) = sin(cos(f(1))) = sin(cos(sin(cos(0.5)))) = 0.65823...; f(3) = 0.71110... and so forth. 0.6948196907307875655784200727751937626855044467359379683700770954817215197...
Links
- G. C. Greubel, Table of n, a(n) for n = 0..5000
Crossrefs
Cf. A277077.
Programs
-
Maple
evalf( solve(sin(cos(x))=x,x)) ; # R. J. Mathar, Sep 28 2007
-
Mathematica
RealDigits[x/.FindRoot[Sin[Cos[x]] -x, {x, 0, 1}, WorkingPrecision -> 105]][[1]] (* G. C. Greubel, Mar 16 2019 *)
-
PARI
solve(x=0, 1, sin(cos(x))-x) \\ Michel Marcus, Oct 04 2016
-
Sage
(sin(cos(x))==x).find_root(0,1,x) # G. C. Greubel, Mar 16 2019
Formula
Let f(0) = some real number k (in radians); then f(n) = sin(cos(f(n-1))), which converges as n goes to infinity.
Extensions
More terms from Michel Marcus, Oct 04 2016
Name clarified by Joerg Arndt, Oct 04 2016
Comments