cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131711 Period 12: repeat 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1.

Original entry on oeis.org

0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1, 0, 1, 2, 5, 2, 9, 0, 9, 8, 5, 8, 1
Offset: 0

Views

Author

Paul Curtz, Sep 14 2007

Keywords

Comments

Final digits of Pell numbers. First differences: 1, 1, 3, -3, 7, -9, 9, -1, -3, 3 -7, -1, 1 (cf. A131707).
Can be though of as 2 interlocking sequences, each of the form a(n) = a(n - 1) - a(n - 2) + a(n - 3) - a(n - 4) + a(n - 5).

Programs

Formula

G.f.: (x^8+8x^7+4x^6+5x^4+4x^2+2x+1)x/((1-x) (1+x) (x^2+x+1) (x^2-x+1) (x^4-x^2+1)). a(n) = |A131201(n)| = A000129(n) mod 10 = A000129(n)-10*A131727(n). [From R. J. Mathar, Sep 20 2008]
a(n) = 25/6 -4*cos(Pi*n/6)/sqrt(3) -sqrt(3)*sin(Pi*n/6) -5*cos(Pi*n/3)/3 -5*cos(2*Pi*n/3)/3 +4*cos(5*Pi*n/6)/sqrt(3) +sqrt(3)*sin(5*Pi*n/6) -5*(-1)^n/6. - R. J. Mathar, Oct 08 2011