cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131735 Period 6: repeat [0, 0, 1, 1, 1, 1].

Original entry on oeis.org

0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 0, 1
Offset: 0

Views

Author

Paul Curtz, Sep 19 2007

Keywords

Crossrefs

Cf. A131719.

Programs

  • Mathematica
    PadRight[{},120,{0,0,1,1,1,1}] (* or *) LinearRecurrence[{1,-1,1,-1,1},{0,0,1,1,1},120] (* Harvey P. Dale, Jun 17 2015 *)

Formula

G.f.: -(x^2+1)*x^2/(x-1)/(x^2+x+1)/(x^2-x+1). - R. J. Mathar, Nov 14 2007
a(n) = 2/3-(1/2)*cos((1/3)*Pi*n)-(1/6)*3^(1/2)*sin((1/3)*Pi*n)-(1/6)*cos((2/3)*Pi*n)-(1/6)*3^(1/2)*sin((2/3)*Pi*n). - R. J. Mathar, Nov 15 2007
a(n) = A131719(n-1), n>0. - R. J. Mathar, Jun 13 2008