A131764 Inverse Euler transform of central binomial coefficients A000984.
1, 2, 3, 10, 30, 102, 335, 1170, 4080, 14560, 52377, 190650, 698870, 2581110, 9586395, 35791358, 134215680, 505290270, 1908866960, 7233629130, 27487764474, 104715392730, 399822314775, 1529755308210, 5864061663920, 22517998136832, 86607683851185, 333599972392960, 1286742745883790, 4969489243995030, 19215358392200893, 74382032555280450, 288230376084602880
Offset: 0
Keywords
Examples
2*x + 3*x^2 + 10*x^3 + 30*x^4 + 102*x^5 + 335*x^6 + 1170*x^7 + 4080*x^8 + ... (1-x)^(-2)*(1-x^2)^(-3)*(1-x^3)^(-10)*(1-x^4)^(-30)*(1-x^5)^(-102) = 1 + 2*x + 6*x^2 + 20*x^3 + 70*x^4 + 252*x^5 + ... .
Links
- Seiichi Manyama, Table of n, a(n) for n = 0..1000
- N. J. A. Sloane, Transforms
Programs
-
Maple
# The function EulerInvTransform is defined in A358451. a := EulerInvTransform(n -> binomial(2*n, n)): seq(a(n), n = 0..32); # Peter Luschny, Nov 21 2022
-
Mathematica
a[n_] := (1/n)*DivisorSum[n, MoebiusMu[n/#]*2^(2*#-1)&]; Table[a[n], {n, 1, 32}] (* Jean-François Alcover, Feb 20 2017 *)
-
MuPAD
a(n):=proc(n) begin 1/n*_plus(moebius(n/d)*2^(2*d-1)$d in divisors(n)) end;
-
PARI
a(n)=sumdiv(n,d,1/n*moebius(n/d)*2^(d*2-1)); /* Joerg Arndt, Jul 06 2011 */
-
PARI
{a(n) = local(A); if( n<1, 0, A = sqrt(1 - 4*x + x * O(x^n)); for( k=1, n-1, A *= (1 - x^k + x * O(x^n))^ polcoeff( A, k)); -polcoeff( A, n))} /* Michael Somos, Apr 01 2012 */
Formula
a(n) = (1/n) * Sum_{d|n} moebius(n/d)*2^(2*d-1) for n > 0, a(0) = 1.
a(n) ~ 2^(2*n-1) / n. - Vaclav Kotesovec, Oct 09 2019
Extensions
More explicit definition from Michael Somos, Apr 01 2012. - N. J. A. Sloane, Feb 20 2017
Comments