A131791 Triangle read by rows of 2^n terms for n>=0: let S(n) denote the initial 2^n terms of the partial sums of row n; starting with a single '1' in row 0, generate row n+1 by concatenating S(n) with the terms of S(n) when read in reverse order.
1, 1, 1, 1, 2, 2, 1, 1, 3, 5, 6, 6, 5, 3, 1, 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1, 1, 5, 14, 29, 50, 76, 105, 135, 165, 194, 220, 241, 256, 265, 269, 270, 270, 269, 265, 256, 241, 220, 194, 165, 135, 105, 76, 50, 29, 14, 5, 1, 1, 6, 20, 49, 99, 175, 280, 415
Offset: 0
Examples
Triangle begins: 1; 1, 1; 1, 2, 2, 1; 1, 3, 5, 6, 6, 5, 3, 1; 1, 4, 9, 15, 21, 26, 29, 30, 30, 29, 26, 21, 15, 9, 4, 1; 1, 5, 14, 29, 50, 76, 105, 135, 165, 194, 220, 241, 256, 265, 269, 270, 270, 269, 265, 256, 241, 220, 194, 165, 135, 105, 76, 50, 29, 14, 5, 1; ... ILLUSTRATION OF GENERATING METHOD. From row 2: [1,2,2,1], take the partial sums: [1,3,5,6] and concatenate to this the terms in reverse order: [6,5,3,1] to obtain row 3: [1,3,5,6, 6,5,3,1].
References
- Richard Kenyon, Infinite scaled convolutions, Preprint, 1992 (apparently unpublished)
Links
- Paul D. Hanna, Rows 0 to 11 of the triangle, flattened.
- Julien Clément, Antoine Genitrini, Binary Decision Diagrams: from Tree Compaction to Sampling, arXiv:1907.06743 [cs.DS], 2019.
Programs
-
Maple
p[-1]:=1: lprint(seriestolist(series(p[-1],x,0))); p[0]:=(1-x^2)/(1-x): lprint(seriestolist(series(p[0],x,2))); for n from 1 to 4 do p[n]:=p[n-1]*(1-x^(2^n+1))/(1-x); lprint(seriestolist(series(p[n],x,2^(n+1)))); od: # N. J. A. Sloane, Nov 13 2018
-
Mathematica
T[n_, k_] := SeriesCoefficient[Product[(1-x^(2^j+1))/(1-x), {j, 0, n-1}], {x, 0, k}]; Table[T[n, k], {n, 0, 6}, {k, 0, 2^n-1}] // Flatten (* Jean-François Alcover, Oct 01 2019 *)
-
PARI
T(n,k)=local(A=[1],B=[1]);if(n==0,1,for(i=0,n-1, B=Vec(Ser(A)/(1-x));A=concat(B,Vec(Pol(B)+O(x^#B))));A[k+1]) for(n=0,6,for(k=0,2^n-1,print1(T(n,k),", "));print())
-
PARI
T(n,k)=polcoeff(prod(j=0,n-1,(1-x^(2^j+1))/(1-x)),k) for(n=0,6,for(k=0,2^n-1,print1(T(n,k),", "));print()) \\ Paul D. Hanna, Aug 09 2009
Formula
T(n, 2^(n-1)) = A028361(n-1) for n>=1.
T(n, 2^(n-2)) = A028362(n-1) for n>=2.
Sum_{k=0..2^n-1} (k+1)*T(n,k) = A028362(n+1) for n>=0.
G.f. of row n: Product_{j=0..n-1} (1 - x^(2^j+1))/(1-x). - Paul D. Hanna, Aug 09 2009
Comments