A131792
Main diagonal of triangle A131791: a(n) = A131791(n,n) for n>=0.
Original entry on oeis.org
1, 1, 2, 6, 21, 76, 280, 1045, 3936, 14925, 56892, 217791, 836706, 3224157, 12456225, 48232162, 187131664, 727309265, 2831193004, 11036424667, 43076087806, 168322335246, 658416150496, 2577945422410, 10102468839284, 39621592646545
Offset: 0
-
{a(n)=if(n==0,1,polcoeff(prod(j=0,n-1,(1-x^(2^j+1))/(1-x)+x*O(x^n)),n))} \\ Max Alekseyev, Aug 30 2007
-
{T(n,k)=if(n==0,1,polcoeff(prod(j=0,n-1,(1-x^min(2^j+1,k+1))/(1-x)+x*O(x^k)),k))} \\ Martin Fuller, Aug 31 2007
A239738
Triangle read by rows: T(n,k) is the number of n-tuples with sum k + n whose i-th element is a positive integer <= prime(i), 0 <= k < A070826(n).
Original entry on oeis.org
1, 1, 2, 1, 3, 5, 6, 1, 4, 9, 15, 21, 26, 29, 1, 5, 14, 29, 50, 76, 105, 134, 160, 181, 196, 204, 1, 6, 20, 49, 99, 175, 280, 414, 574, 755, 951, 1155, 1359, 1554, 1730, 1876, 1981, 2036, 1, 7, 27, 76, 175, 350, 630, 1044, 1618, 2373, 3324, 4479, 5838, 7392, 9122, 10998, 12979, 15014, 17044, 19005, 20832, 22463, 23842, 24921, 25662, 26039
Offset: 1
Triangle T(n,k) begins: (n >= 1, k >= 0)
1;
1, 2;
1, 3, 5, 6;
1, 4, 9, 15, 21, 26, 29;
1, 5, 14, 29, 50, 76, 105, 134, 160, 181, 196, 204;
1, 6, 20, 49, 99, 175, 280, 414, 574, 755, 951, 1155, 1359, 1554, 1730, 1876, 1981, 2036;
...
T(3, 2) = 5 because the following 3-tuples have sum 2 + 3 = 5: (1,1,3), (1,2,2), (1,3,1), (2,1,2), (2,2,1). The tuple (3,1,1) is excluded because the 1st term is required to be no greater than prime(1) = 2.
-
row[r_]:=Drop[#,-Length[#]/2]&[Transpose[Tally[Total[Tuples[Table[Range[1,Prime[k]],{k,1,r}]],{2}]]][[2]]] (* generates row r of the table *)
Grid@Table[row[r],{r,1,7}] (* generates the table *)
Flatten@Table[row[r],{r,1,7}] (* generates the sequence *) (* Steven Foster Clark, Feb 02 2023 *)
row[r_]:=Drop[#,-Length[#]/2]&[CoefficientList[1/(x-1)^r Product[(x^Prime[i]-1),{i,1,r}],x]] (* generates row r of the table *) (* Steven Foster Clark, Feb 07 2023 *)
-
row(n)={my(v=Vecrev(prod(i=1, n, 1 - x^prime(i))/(1 - x)^n)); v[1..#v/2]} \\ Andrew Howroyd, Feb 06 2023
Showing 1-2 of 2 results.
Comments