A131830 Triangle read by rows: T(n,0) = T(n,n) = n + 1 for n >= 0, and T(n,k) = binomial(n,k) for 1 <= k <= n - 1, n >= 2.
1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 6, 4, 5, 6, 5, 10, 10, 5, 6, 7, 6, 15, 20, 15, 6, 7, 8, 7, 21, 35, 35, 21, 7, 8, 9, 8, 28, 56, 70, 56, 28, 8, 9, 10, 9, 36, 84, 126, 126, 84, 36, 9, 10, 11, 10, 45, 120, 210, 252, 210, 120, 45, 10, 11, 12, 11, 55, 165, 330, 462, 462, 330, 165, 55, 11, 12
Offset: 0
Examples
First few rows of the triangle are: 1; 2, 2; 3, 2, 3; 4, 3, 3, 4; 5, 4, 6, 4, 5; 6, 5, 10, 10, 5, 6; 7, 6, 15, 20, 15, 6, 7; ...
Links
- Georg Fischer, Table of n, a(n) for n = 0..10152 [Rows 0..141] (older version by B. D. Swan)
Programs
-
Mathematica
Flatten[Table[If[Or[k==n,k==0], n+1, Binomial[n, k]], {n, 0, 11}, {k, 0, n}]] (* Georg Fischer, Feb 18 2020 *)
-
Maxima
T(n, k) := if k = 0 or k = n then n + 1 else binomial(n, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 19 2018 */
Formula
From Franck Maminirina Ramaharo, Dec 19 2018: (Start)
G.f.: (1 - (1 + x)*y - 2*x*y^2 + (3*x + 3*x^2)*y^3 - (x + x^2 + x^3)*y^4)/((1 - y)^2*(1 - x*y)^2*(1 - y - x*y)).
E.g.f.: y*exp(y) + (x*y + exp(y))*exp(x*y). (End)
Extensions
Edited by Franck Maminirina Ramaharo, Dec 19 2018
B-file corrected from a(1678) onwards by Georg Fischer, Feb 18 2020
Comments