cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A128715 A131830 + A103451 - A000012 as infinite lower triangular matrices.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 2, 2, 4, 5, 3, 5, 3, 5, 6, 4, 9, 9, 4, 6, 7, 5, 14, 19, 14, 5, 7, 8, 6, 20, 34, 34, 20, 6, 8, 9, 7, 27, 55, 69, 55, 27, 7, 9, 10, 8, 35, 83, 125, 125, 83, 35, 8, 10
Offset: 0

Views

Author

Gary W. Adamson, Aug 09 2007

Keywords

Comments

Row sums are (apart from the first row) given by A005126.

Examples

			First few rows of the triangle are:
1;
2, 2;
3, 1, 3;
4, 2, 2, 4;
5, 3, 5, 3, 5;
6, 4, 9, 9, 4, 6;
7, 5, 14, 19, 14, 5, 7;
8, 6, 20, 34, 34, 20, 6, 8;
9, 7, 27, 55, 69, 55, 27, 7, 9;
...
		

Crossrefs

A131832 2*(A131830) - A000012.

Original entry on oeis.org

1, 3, 3, 5, 3, 5, 7, 5, 5, 7, 9, 7, 11, 7, 9, 11, 9, 19, 19, 9, 11, 13, 11, 29, 39, 29, 11, 13, 15, 13, 41, 69, 69, 41, 13, 15, 17, 15, 55, 111, 139, 111, 55, 15, 17, 19, 17, 71, 167, 251, 251, 167, 71, 17, 19
Offset: 0

Views

Author

Gary W. Adamson, Jul 20 2007

Keywords

Comments

Row sums = A131833: (1, 6, 13, 24, 43, 78, ...).

Examples

			First few rows of the triangle:
   1;
   3,  3;
   5,  3,  5;
   7,  5,  5,  7;
   9,  7, 11,  7,  9;
  11,  9, 19, 19,  9, 11;
  13, 11, 29, 39, 29, 11, 13;
  15, 13, 41, 69, 69, 41, 13, 15;
  ...
		

Crossrefs

Formula

2*(A131810) - A000012 as infinite lower triangular matrices.

A131821 Triangle read by rows: row n consists of n followed by (n-2) ones then n.

Original entry on oeis.org

1, 2, 2, 3, 1, 3, 4, 1, 1, 4, 5, 1, 1, 1, 5, 6, 1, 1, 1, 1, 6, 7, 1, 1, 1, 1, 1, 7, 8, 1, 1, 1, 1, 1, 1, 8, 9, 1, 1, 1, 1, 1, 1, 1, 9, 10, 1, 1, 1, 1, 1, 1, 1, 1, 10, 11, 1, 1, 1, 1, 1, 1, 1, 1, 1, 11, 12, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 12, 13, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 13, 14, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 14
Offset: 1

Views

Author

Gary W. Adamson, Jul 19 2007

Keywords

Examples

			First few rows of the triangle are:
  1;
  2, 2;
  3, 1, 3;
  4, 1, 1, 4;
  5, 1, 1, 1, 5;
  6, 1, 1, 1, 1, 6;
  7, 1, 1, 1, 1, 1, 7;
  ...
		

Crossrefs

Programs

  • Maple
    A131821 := proc(n,c) if c=1 or c=n then n ; else 1 ; fi ; end: for n from 1 to 16 do for c from 1 to n do printf("%d,",A131821(n,c)) ; od: od: # R. J. Mathar, May 30 2008
  • Mathematica
    T[n_, k_] := If[k == 1 || k == n, n, 1];
    Table[T[n, k], {n, 1, 14}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 05 2023 *)
  • Maxima
    T(n,k) := if k = 1 or k = n then n else 1$
    create_list(T(n, k), n, 1, 12, k, 1, n); /* Franck Maminirina Ramaharo, Dec 19 2018 */
    
  • Python
    from math import isqrt
    def A131821(n): return m+(k>r) if 0<=(k:=n<<1)-(r:=(m:=isqrt(k))*(m+1))<=2 or n<=2 else 1 # Chai Wah Wu, Nov 07 2024

Formula

T(n,k) = A130296(n,k) + A051340(k-1,n-k) - 1.
T(n,1) = T(n,n) = n for n >= 1, and T(n,k) = 1 for 2 <= k <= n - 1, n >= 3.
From Franck Maminirina Ramaharo, Dec 19 2018: (Start)
T(n,k) = A130296(n,k) + A130296(n,n-k+1) - 1.
G.f.: y*(x - 3*x^2*y^2 + (x^2 + x^3)*y^3)/((1 - y)^2*(1 - x*y)^2).
E.g.f.: (1 - x^2 +(x^2 + (x - x^2)*y)*exp(y) - (1 - (x - x^2)*y)*exp(x*y))/(1 - x). (End)

Extensions

More terms from R. J. Mathar, May 30 2008

A100314 Number of 2 X n 0-1 matrices avoiding simultaneously the right angled numbered polyomino patterns (ranpp) (00;1), (01;0), (10;0) and (01;1).

Original entry on oeis.org

1, 4, 8, 14, 24, 42, 76, 142, 272, 530, 1044, 2070, 4120, 8218, 16412, 32798, 65568, 131106, 262180, 524326, 1048616, 2097194, 4194348, 8388654, 16777264, 33554482, 67108916, 134217782, 268435512, 536870970, 1073741884, 2147483710, 4294967360, 8589934658
Offset: 0

Views

Author

Sergey Kitaev, Nov 13 2004

Keywords

Comments

An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1 < i2, j1 < j2 and these elements are in the same relative order as those in the triple (x,y,z). In general, the number of m X n 0-1 matrices in question is given by 2^m + 2^n + 2*(n*m-n-m).

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Crossrefs

Cf. this sequence (m=2), A100315 (m=3), A100316 (m=4).
Row sums of A131830.

Programs

Formula

a(n) = 2^n + 2*n.
From Gary W. Adamson, Jul 20 2007: (Start)
Binomial transform of (1, 3, 1, 1, 1, ...).
For n > 0, a(n) = 2*A005126(n-1). (End)
From R. J. Mathar, Jun 13 2008: (Start)
G.f.: 1 + 2*x*(2 -4*x +x^2)/((1-x)^2*(1-2*x)).
a(n+1)-a(n) = A052548(n). (End)
From Colin Barker, Oct 16 2013: (Start)
a(n) = 4*a(n-1) - 5*a(n-2) + 2*a(n-3).
G.f.: (1 - 3*x^2)/((1-x)^2*(1-2*x)). (End)
E.g.f.: exp(2*x) + 2*x*exp(x). - Franck Maminirina Ramaharo, Dec 19 2018
a(n) = A000079(n) + A005843(n). - Muniru A Asiru, Dec 21 2018

Extensions

a(0)=1 prepended by Alois P. Heinz, Dec 21 2018

A321123 a(n) = 2^n + 2*n^2 + 2*n + 1.

Original entry on oeis.org

2, 7, 17, 33, 57, 93, 149, 241, 401, 693, 1245, 2313, 4409, 8557, 16805, 33249, 66081, 131685, 262829, 525049, 1049417, 2098077, 4195317, 8389713, 16778417, 33555733, 67110269, 134219241, 268437081, 536872653, 1073743685, 2147485633, 4294969409, 8589936837
Offset: 0

Views

Author

Keywords

Comments

For n >= 2, a(n) is the number of evaluation points on the n-dimensional cube in Genz and Malik's degree 7 cubature rule.

Crossrefs

Programs

  • Magma
    [2^n + 2*n^2 + 2*n + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
  • Mathematica
    Table[2^n + 2*n^2 + 2*n + 1, {n, 0, 50}]
  • Maxima
    makelist(2^n + 2*n^2 + 2*n + 1, n, 0, 50);
    

Formula

a(n) = A000079(n) + A001844(n).
a(n) = 5*a(n-1) - 9*a(n-2) + 7*a(n-3) - 2*a(n-4), n >= 4.
G.f.: (2 - 3*x - 3*x^3)/((1 - 2*x)*(1 - x)^3).
E.g.f.: exp(2*x) + (1 + 4*x + 2*x^2)*exp(x).

A322593 a(n) = 2^n + 2*n^2 + 1.

Original entry on oeis.org

2, 5, 13, 27, 49, 83, 137, 227, 385, 675, 1225, 2291, 4385, 8531, 16777, 33219, 66049, 131651, 262793, 525011, 1049377, 2098035, 4195273, 8389667, 16778369, 33555683, 67110217, 134219187, 268437025, 536872595, 1073743625, 2147485571, 4294969345, 8589936771
Offset: 0

Views

Author

Keywords

Comments

For n = 3..7, a(n) is the number of evaluating points on the n-dimensional sphere (also n-space with weight function exp(-r^2) or exp(-r)) in a degree 7 cubature rule.

References

  • Arthur H. Stroud, Approximate calculation of multiple integrals, Prentice-Hall, 1971.

Crossrefs

Programs

  • Magma
    [2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
  • Mathematica
    Table[2^n + 2*n^2 + 1, {n, 0, 50}]
    LinearRecurrence[{5,-9,7,-2},{2,5,13,27},50] (* Harvey P. Dale, Mar 23 2021 *)
  • Maxima
    makelist(2^n + 2*n^2 + 1, n, 0, 50);
    

Formula

a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), n >= 4.
a(n) = a(n-1) + A100315(n-1), n >= 2.
G.f.: (2 - 5*x + 6*x^2 - 7*x^3)/((1 - 2*x)*(1 - x)^3)
E.g.f.: exp(2*x) + (1 + 2*x + 2*x^2)*exp(x).
Showing 1-6 of 6 results.