A131831 Duplicate of A100314.
1, 4, 8, 14, 24, 42, 76, 142, 272, 530, 1044, 2070, 4120, 8218, 16412, 32798, 65568, 131106, 262180, 524326, 1048616, 2097194, 4194348, 8388654, 16777264, 33554482, 67108916
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
a052548 = (+ 2) . a000079 a052548_list = iterate ((subtract 2) . (* 2)) 3 -- Reinhard Zumkeller, Sep 05 2015
[2^n + 2: n in [0..35]]; // Vincenzo Librandi, Apr 29 2011
spec := [S,{S=Union(Sequence(Union(Z,Z)),Sequence(Z),Sequence(Z))},unlabeled]: seq(combstruct[count](spec,size=n), n=0..20);
2^Range[0,40]+2 (* Harvey P. Dale, Jun 26 2012 *)
a(n)=1<Charles R Greathouse IV, Nov 20 2011
First few rows of the triangle are: 1; 2, 2; 3, 2, 3; 4, 3, 3, 4; 5, 4, 6, 4, 5; 6, 5, 10, 10, 5, 6; 7, 6, 15, 20, 15, 6, 7; ...
Flatten[Table[If[Or[k==n,k==0], n+1, Binomial[n, k]], {n, 0, 11}, {k, 0, n}]] (* Georg Fischer, Feb 18 2020 *)
T(n, k) := if k = 0 or k = n then n + 1 else binomial(n, k)$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 19 2018 */
Triangle begins: 1; 1, 1; 1, 4, 1; 1, 5, 5, 1; 1, 6, 8, 6, 1; 1, 7, 12, 12, 7, 1; 1, 8, 17, 22, 17, 8, 1; 1, 9, 23, 37, 37, 23, 9, 1; 1, 10, 30, 58, 72, 58, 30, 10, 1; 1, 11, 38, 86, 128, 128, 86, 38, 11, 1; 1, 12, 47, 122, 212, 254, 212, 122, 47, 12, 1; ...
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 2 >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
T[n_, m_] = Binomial[n, m] + 2*If[m*(n - m) > 0, 1, 0]; Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 2$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 08 2018 */
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 2 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
[2^n+4*n+2*(1-0^n): n in [0..40]]; // G. C. Greubel, Feb 01 2023
Table[If[n==0, 1, 2^n+4*n+2], {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
[2^n+4*n+2*(1-0^n) for n in range(41)] # G. C. Greubel, Feb 01 2023
Triangle begins: 1; 1, 1; 1, 6, 1; 1, 7, 7, 1; 1, 8, 10, 8, 1; 1, 9, 14, 14, 9, 1; 1, 10, 19, 24, 19, 10, 1; 1, 11, 25, 39, 39, 25, 11, 1; 1, 12, 32, 60, 74, 60, 32, 12, 1; 1, 13, 40, 88, 130, 130, 88, 40, 13, 1; 1, 14, 49, 124, 214, 256, 214, 124, 49, 14, 1; ...
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 4 >; [T(n,k): k in [0..n], n in [0..12]]; // G. C. Greubel, Feb 13 2021
T[n_, m_] = Binomial[n, m] + 4*If[m*(n - m) > 0, 1, 0]; Flatten[Table[T[n, m], {n, 0, 10}, {m, 0, n}]]
T(n,k) := if k = 0 or k = n then 1 else binomial(n, k) + 4$ create_list(T(n, k), n, 0, 12, k, 0, n); /* Franck Maminirina Ramaharo, Dec 09 2018 */
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 4 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 13 2021
[2^n+6*n+8*(1-0^n): n in [0..40]]; // G. C. Greubel, Feb 01 2023
Table[If[n==0, 1, 2^n+6*n+8], {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Jul 08 2011 *)
[2^n+6*n+8*(1-0^n) for n in range(41)] # G. C. Greubel, Feb 01 2023
[2^n + 2*n^2 + 2*n + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
Table[2^n + 2*n^2 + 2*n + 1, {n, 0, 50}]
makelist(2^n + 2*n^2 + 2*n + 1, n, 0, 50);
[2^n + 2*n^2 + 1: n in [0..33]]; // Marius A. Burtea, Dec 28 2018
Table[2^n + 2*n^2 + 1, {n, 0, 50}] LinearRecurrence[{5,-9,7,-2},{2,5,13,27},50] (* Harvey P. Dale, Mar 23 2021 *)
makelist(2^n + 2*n^2 + 1, n, 0, 50);
LinearRecurrence[{3, -1, -3, 2}, {0, 1, 3, 5}, 32] (* Robert P. P. McKone, Jan 28 2021 *)
Comments