cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 69 results. Next

A000918 a(n) = 2^n - 2.

Original entry on oeis.org

-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 68719476734, 137438953470
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the expected number of tosses of a fair coin to get n-1 consecutive heads. - Pratik Poddar, Feb 04 2011
For n > 2, Sum_{k=1..a(n)} (-1)^binomial(n, k) = A064405(a(n)) + 1 = 0. - Benoit Cloitre, Oct 18 2002
For n > 0, the number of nonempty proper subsets of an n-element set. - Ross La Haye, Feb 07 2004
Numbers j such that abs( Sum_{k=0..j} (-1)^binomial(j, k)*binomial(j + k, j - k) ) = 1. - Benoit Cloitre, Jul 03 2004
For n > 2 this formula also counts edge-rooted forests in a cycle of length n. - Woong Kook (andrewk(AT)math.uri.edu), Sep 08 2004
For n >= 1, conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4, 5, 6 and 7 as a digit. - Alexandre Wajnberg, Apr 25 2005
Beginning with a(2) = 2, these are the partial sums of the subsequence of A000079 = 2^n beginning with A000079(1) = 2. Hence for n >= 2 a(n) is the smallest possible sum of exactly one prime, one semiprime, one triprime, ... and one product of exactly n-1 primes. A060389 (partial sums of the primorials, A002110, beginning with A002110(1)=2) is the analog when all the almost primes must also be squarefree. - Rick L. Shepherd, May 20 2005
From the second term on (n >= 1), the binary representation of these numbers is a 0 preceded by (n - 1) 1's. This pattern (0)111...1110 is the "opposite" of the binary 2^n+1: 1000...0001 (cf. A000051). - Alexandre Wajnberg, May 31 2005
The numbers 2^n - 2 (n >= 2) give the positions of 0's in A110146. Also numbers k such that k^(k + 1) = 0 mod (k + 2). - Zak Seidov, Feb 20 2006
Partial sums of A155559. - Zerinvary Lajos, Oct 03 2007
Number of surjections from an n-element set onto a two-element set, with n >= 2. - Mohamed Bouhamida, Dec 15 2007
It appears that these are the numbers n such that 3*A135013(n) = n*(n + 1), thus answering Problem 2 on the Mathematical Olympiad Foundation of Japan, Final Round Problems, Feb 11 1993 (see link Japanese Mathematical Olympiad).
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is a proper subset of y or y is a proper subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
The permutohedron Pi_n has 2^n - 2 facets [Pashkovich]. - Jonathan Vos Post, Dec 17 2009
First differences of A005803. - Reinhard Zumkeller, Oct 12 2011
For n >= 1, a(n + 1) is the smallest even number with bit sum n. Cf. A069532. - Jason Kimberley, Nov 01 2011
a(n) is the number of branches of a complete binary tree of n levels. - Denis Lorrain, Dec 16 2011
For n>=1, a(n) is the number of length-n words on alphabet {1,2,3} such that the gap(w)=1. For a word w the gap g(w) is the number of parts missing between the minimal and maximal elements of w. Generally for words on alphabet {1,2,...,m} with g(w)=g>0 the e.g.f. is Sum_{k=g+2..m} (m - k + 1)*binomial((k - 2),g)*(exp(x) - 1)^(k - g). a(3)=6 because we have: 113, 131, 133, 311, 313, 331. Cf. A240506. See the Heubach/Mansour reference. - Geoffrey Critzer, Apr 13 2014
For n > 0, a(n) is the minimal number of internal nodes of a red-black tree of height 2*n-2. See the Oct 02 2015 comment under A027383. - Herbert Eberle, Oct 02 2015
Conjecture: For n>0, a(n) is the least m such that A007814(A000108(m)) = n-1. - L. Edson Jeffery, Nov 27 2015
Actually this follows from the procedure for determining the multiplicity of prime p in C(n) given in A000108 by Franklin T. Adams-Watters: For p=2, the multiplicity is the number of 1 digits minus 1 in the binary representation of n+1. Obviously, the smallest k achieving "number of 1 digits" = k is 2^k-1. Therefore C(2^k-2) is divisible by 2^(k-1) for k > 0 and there is no smaller m for which 2^(k-1) divides C(m) proving the conjecture. - Peter Schorn, Feb 16 2020
For n >= 0, a(n) is the largest number you can write in bijective base-2 (a.k.a. the dyadic system, A007931) with n digits. - Harald Korneliussen, May 18 2019
The terms of this sequence are also the sum of the terms in each row of Pascal's triangle other than the ones. - Harvey P. Dale, Apr 19 2020
For n > 1, binomial(a(n),k) is odd if and only if k is even. - Charlie Marion, Dec 22 2020
For n >= 2, a(n+1) is the number of n X n arrays of 0's and 1's with every 2 X 2 square having density exactly 2. - David desJardins, Oct 27 2022
For n >= 1, a(n+1) is the number of roots of unity in the unique degree-n unramified extension of the 2-adic field Q_2. Note that for each p, the unique degree-n unramified extension of Q_p is the splitting field of x^(p^n) - x, hence containing p^n - 1 roots of unity for p > 2 and 2*(2^n - 1) for p = 2. - Jianing Song, Nov 08 2022

Examples

			a(4) = 14 because the 14 = 6 + 4 + 4 rationals (in lowest terms) for n = 3 are (see the Jun 14 2017 formula above): 1/2, 1, 3/2, 2, 5/2, 3; 1/4, 3/4, 5/4, 7/4; 1/8, 3/8, 5/8, 7/8. - _Wolfdieter Lang_, Jun 14 2017
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134. - Mohammad K. Azarian, Oct 27 2011
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 86, Exercise 3.16.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Row sums of triangle A026998.
Cf. A058809 (3^n-3, n>0).

Programs

  • Haskell
    a000918 = (subtract 2) . (2 ^)
    a000918_list = iterate ((subtract 2) . (* 2) . (+ 2)) (- 1)
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Magma
    [2^n - 2: n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(2^n-2,n=0..20) ;
  • Mathematica
    Table[2^n - 2, {n, 0, 29}] (* Alonso del Arte, Dec 01 2012 *)
  • PARI
    a(n)=2^n-2 \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    def A000918(n): return (1<Chai Wah Wu, Jun 10 2025

Formula

a(n) = 2*A000225(n-1).
G.f.: 1/(1 - 2*x) - 2/(1 - x), e.g.f.: (e^x - 1)^2 - 1. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
For n >= 1, a(n) = A008970(n + 1, 2). - Philippe Deléham, Feb 21 2004
G.f.: (3*x - 1)/((2*x - 1)*(x - 1)). - Simon Plouffe in his 1992 dissertation for the sequence without the leading -1
a(n) = 2*a(n - 1) + 2. - Alexandre Wajnberg, Apr 25 2005
a(n) = A000079(n) - 2. - Omar E. Pol, Dec 16 2008
a(n) = A058896(n)/A052548(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A164874(n - 1, n - 1) for n > 1. - Reinhard Zumkeller, Aug 29 2009
a(n) = A173787(n,1); a(n) = A028399(2*n)/A052548(n), n > 0. - Reinhard Zumkeller, Feb 28 2010
a(n + 1) = A027383(2*n - 1). - Jason Kimberley, Nov 02 2011
G.f.: U(0) - 1, where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k + 1)/(x*2^(k + 1) - (k + 1)/U(k + 1) ))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n+1) is the sum of row n in triangle A051601. - Reinhard Zumkeller, Aug 05 2013
a(n+1) = A127330(n,0). - Reinhard Zumkeller, Nov 16 2013
a(n) = Sum_{k=1..n-1} binomial(n, k) for n > 0. - Dan McCandless, Nov 14 2015
From Miquel Cerda, Aug 16 2016: (Start)
a(n) = A000225(n) - 1.
a(n) = A125128(n-1) - A000325(n).
a(n) = A095151(n) - A125128(n) - 1. (End)
a(n+1) = 2*(n + Sum_{j=1..n-1} (n-j)*2^(j-1)), n >= 1. This is the number of the rationals k/2, k = 1..2*n for n >= 1 and (2*k+1)/2^j for j = 2..n, n >= 2, and 2*k+1 < n-(j-1). See the example for n = 3 below. Motivated by the proposal A287012 by Mark Rickert. - Wolfdieter Lang, Jun 14 2017

Extensions

Maple programs fixed by Vaclav Kotesovec, Dec 13 2014

A028399 a(n) = 2^n - 4.

Original entry on oeis.org

0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2

Views

Author

Keywords

Comments

Number of permutations of [n] with 2 sequences.
Number of 2 X n binary matrices that avoid simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
The number of edges in the dual Edwards-Venn diagram graph with n-1 digits when n>2.
a(n) (n>=6) is the number of vertices in the molecular graph NS2[n-5], defined pictorially in the Ashrafi et al. reference (Fig. 2, where NS2[2] is shown). - Emeric Deutsch, May 16 2018
From Petros Hadjicostas, Aug 08 2019: (Start)
With regard to the comment above about a(n) being the "number of permutations of [n] with 2 sequences", we refer to Ex. 13 (pp. 260-261) of Comtet (1974), who uses the definition of a "séquence" given by André in several of his papers in the 19th century.
In the terminology of array A059427, these so-called "séquences" in permutations (defined by Comtet and André) are called "alternating runs" (or just "runs"). We discuss these so-called "séquences" below.
If b = (b_1, b_2, ..., b_n) is a permutation of [n], written in one-line notation (not in cycle notation), a "séquence" in a permutation of length l >= 2 (according to Comtet) is a maximal interval of integers {i, i+1, ..., i+l-1} for some i (where 1 <= i <= n-l+1) such that b_i < b_{i+1} < ... < b_{i+l-1} or b_i > b_{i+1} > ... > b_{i+l-1}. (The word "maximal" means that, in the first case, we have b_{i-1} > b_i and b_{i+l} < b_{i+l-1}, while in the second case, we have b_{i-1} < b_i and b_{i+l} > b_{i+l-1} provided b_{i-1} and b_{i+l} can be defined.)
When defining a "séquence", André (1884) actually refers to the list of terms (b_i, b_{i+1}, ..., b_{i+l-1}) rather than the corresponding index set {i, i+1, ..., i+l-1} (which is essentially the same thing).
For more details about these so-called "séquences" (or "alternate runs"), see the comments and examples for sequence A000708.
(End)
For n >= 1, a(n+2) is the number of shortest paths from (0,0) of a square grid to {(x,y): |x|+|y| = n} along the grid line. - Jianing Song, Aug 23 2021

Examples

			From _Petros Hadjicostas_, Aug 08 2019: (Start)
We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"):
   123 -> 123 (one),
   132 -> 13, 32 (two),
   213 -> 21, 13 (two),
   231 -> 23, 31 (two),
   312 -> 31, 12 (two),
   321 -> 321 (one).
Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.

Crossrefs

Column k = 2 of A059427.
Row n = 2 of A371064.

Programs

  • GAP
    a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
    
  • Maple
    seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
  • Mathematica
    2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n)=if(n<2, 0, 2^n-4)
    
  • Python
    def A028399(n): return (1<Chai Wah Wu, Jun 27 2023

Formula

O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A175164(2*n)/A140504(n+2);
a(2*n) = A052548(n)*A000918(n) for n > 0;
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021

Extensions

Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001

A057168 Next larger integer with same binary weight (number of 1 bits) as n.

Original entry on oeis.org

2, 4, 5, 8, 6, 9, 11, 16, 10, 12, 13, 17, 14, 19, 23, 32, 18, 20, 21, 24, 22, 25, 27, 33, 26, 28, 29, 35, 30, 39, 47, 64, 34, 36, 37, 40, 38, 41, 43, 48, 42, 44, 45, 49, 46, 51, 55, 65, 50, 52, 53, 56, 54, 57, 59, 67, 58, 60, 61, 71, 62, 79, 95, 128, 66, 68, 69, 72, 70, 73, 75
Offset: 1

Views

Author

Marc LeBrun, Sep 14 2000

Keywords

Comments

Binary weight is given by A000120.

Examples

			a(6)=9 since 6 has two one-bits (i.e., 6=2+4) and 9 is the next higher integer of binary weight two (7 is weight three and 8 is weight one).
		

References

  • Donald Knuth, The Art of Computer Programming, Vol. 4A, section 7.1.3, exercises 20-21.

Crossrefs

Programs

  • Haskell
    a057168 n = a057168_list !! (n-1)
    a057168_list = f 2 $ tail a000120_list where
       f x (z:zs) = (x + length (takeWhile (/= z) zs)) : f (x + 1) zs
    -- Reinhard Zumkeller, Aug 26 2012
    
  • Mathematica
    a[n_] := (bw = DigitCount[n, 2, 1]; k = n+1; While[ DigitCount[k, 2, 1] != bw, k++]; k); Table[a[n], {n, 1, 71}](* Jean-François Alcover, Nov 28 2011 *)
  • PARI
    a(n)=my(u=bitand(n,-n),v=u+n);(bitxor(v,n)/u)>>2+v \\ Charles R Greathouse IV, Oct 28 2009
    
  • PARI
    A057168(n)=n+bitxor(n,n+n=bitand(n,-n))\n\4+n \\ M. F. Hasler, Aug 27 2014
    
  • Python
    def a(n): u = n&-n; v = u+n; return (((v^n)//u)>>2)+v
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Jul 10 2022 after Charles R Greathouse IV
    
  • Python
    def A057168(n): return ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b # Chai Wah Wu, Mar 06 2025

Formula

From Reinhard Zumkeller, Aug 18 2008: (Start)
a(A000079(n)) = A000079(n+1);
a(A000051(n)) = A052548(n);
a(A052548(n)) = A140504(n);
a(A000225(n)) = A055010(n);
a(A007283(n)) = A000051(n+2). (End)
a(n) = MIN{m: A000120(m)=A000120(n) and m>n}. - Reinhard Zumkeller, Aug 15 2009
For k,m>0, a((2^k-1)*2^m) = 2^(k+m)+2^(k-1)-1. - Chai Wah Wu, Mar 07 2025
If n is odd, then a(n) = XOR(n,OR(a,a/2)) where a = AND(-n,n+1). - Chai Wah Wu, Mar 08 2025

A062709 a(n) = 2^n + 3.

Original entry on oeis.org

4, 5, 7, 11, 19, 35, 67, 131, 259, 515, 1027, 2051, 4099, 8195, 16387, 32771, 65539, 131075, 262147, 524291, 1048579, 2097155, 4194307, 8388611, 16777219, 33554435, 67108867, 134217731, 268435459, 536870915, 1073741827, 2147483651, 4294967299, 8589934595, 17179869187
Offset: 0

Views

Author

Henry Bottomley, Jul 13 2001

Keywords

Comments

Written in binary a(n) is 1000...00011 for n > 1.
For n >= 2, a(n) is the minimal k for which A000120(k(2^n-1)) is not multiple of n. - Vladimir Shevelev, Jun 05 2009

Examples

			a(3) = 2^3 + 3 = 8 + 3 = 11.
a(4) = 2^4 + 3 = 16 + 3 = 19.
		

Crossrefs

Primes in this sequence are A057733.

Programs

Formula

a(n) = 2a(n-1) - 3 = A052548(n) + 1 = A000051(n) + 2 = A000079(n) + 3 = A000225(n) + 4 = A030101(A004119(n)) for n > 1.
G.f.: (4 - 7*x)/((1 - 2*x)*(1 - x)).
a(n) = A173921(A000051(n+1)). - Reinhard Zumkeller, Mar 04 2010
E.g.f.: exp(x)*(3 + exp(x)). - Stefano Spezia, May 06 2023

A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Comments

Essentially the same as A048645. - T. D. Noe, Mar 28 2011

Examples

			Triangle begins as:
     2;
     3,    4;
     5,    6,    8;
     9,   10,   12,   16;
    17,   18,   20,   24,   32;
    33,   34,   36,   40,   48,   64;
    65,   66,   68,   72,   80,   96,  128;
   129,  130,  132,  136,  144,  160,  192,  256;
   257,  258,  260,  264,  272,  288,  320,  384,  512;
   513,  514,  516,  520,  528,  544,  576,  640,  768, 1024;
  1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
		

Crossrefs

Programs

  • Magma
    [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
  • PARI
    A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
    
  • Python
    from math import isqrt, comb
    def A173786(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return (1<Chai Wah Wu, Jun 20 2025
  • Sage
    flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
    

Formula

1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).

Extensions

Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010

A271466 Number T(n,k) of set partitions of [n] such that k is the largest element of the last block; triangle T(n,k), n>=1, 1<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 2, 0, 1, 4, 0, 1, 4, 10, 0, 1, 6, 15, 30, 0, 1, 10, 29, 59, 104, 0, 1, 18, 63, 139, 250, 406, 0, 1, 34, 149, 365, 692, 1145, 1754, 0, 1, 66, 375, 1039, 2110, 3627, 5649, 8280, 0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294, 0, 1, 258, 2703, 10039, 24190, 46299, 77133, 117488, 168509, 231950
Offset: 1

Author

Alois P. Heinz, Apr 08 2016

Keywords

Comments

Each set partition is written as a sequence of blocks, ordered by the smallest elements in the blocks.

Examples

			T(1,1) = 1: 1.
T(2,2) = 2: 12, 1|2.
T(3,2) = 1: 13|2.
T(3,3) = 4: 123, 12|3, 1|23, 1|2|3.
T(4,2) = 1: 134|2.
T(4,3) = 4: 124|3, 14|23, 14|2|3, 1|24|3.
T(4,4) = 10: 1234, 123|4, 12|34, 12|3|4, 13|24, 13|2|4, 1|234, 1|23|4, 1|2|34, 1|2|3|4.
T(5,2) = 1: 1345|2.
T(5,3) = 6: 1245|3, 145|23, 145|2|3, 14|25|3, 15|24|3, 1|245|3.
T(5,4) = 15: 1235|4, 125|34, 125|3|4, 12|35|4, 135|24, 135|2|4, 13|25|4, 15|234, 15|23|4, 1|235|4, 15|2|34, 1|25|34, 15|2|3|4, 1|25|3|4, 1|2|35|4.
Triangle T(n,k) begins:
  1;
  0, 2;
  0, 1,   4;
  0, 1,   4,  10;
  0, 1,   6,  15,   30;
  0, 1,  10,  29,   59,  104;
  0, 1,  18,  63,  139,  250,   406;
  0, 1,  34, 149,  365,  692,  1145,  1754;
  0, 1,  66, 375, 1039, 2110,  3627,  5649,  8280;
  0, 1, 130, 989, 3149, 6932, 12521, 20085, 29874, 42294;
  ...
		

Crossrefs

Columns k=1-10 give: A000007(n-1), A054977(n-2), A052548(n-3) for n>3, A271743, A271744, A271745, A271746, A271747, A271748, A271749.
Main diagonal gives A186021(n-1).
Lower diagonals d=1-10 give: A271752, A271753, A271754, A271755, A271756, A271757, A271758, A271759, A271760, A271761.
Row sums give A000110.
T(2n,n) gives A271467.
T(2n+1,n+1) gives A271607.
Cf. A095149 (k is maximum of the first block), A113547 (k is minimum of the last block).

Programs

  • Maple
    b:= proc(n, m, c) option remember; `if`(n=0, x^c, add(
          b(n-1, max(m, j), `if`(j>=m, n, c)), j=1..m+1))
        end:
    T:= n-> (p-> seq(coeff(p, x, n-i), i=0..n-1))(b(n, 0$2)):
    seq(T(n), n=1..12);
  • Mathematica
    b[n_, m_, c_] := b[n, m, c] = If[n == 0, x^c, Sum[b[n-1, Max[m, j], If[j >= m, n, c]], {j, 1, m+1}]];
    T[n_] := Function[p, Table[Coefficient[p, x, n-i], {i, 0, n-1}]][b[n, 0, 0]];
    Table[T[n], {n, 1, 12}] // Flatten (* Jean-François Alcover, Apr 24 2016, translated from Maple *)

Formula

T(n,n) = 2 * A000110(n-1) = 2 * Sum_{j=0..n-1} T(n-1,j) for n>1.

A140504 a(n) = 2^n + 4.

Original entry on oeis.org

5, 6, 8, 12, 20, 36, 68, 132, 260, 516, 1028, 2052, 4100, 8196, 16388, 32772, 65540, 131076, 262148, 524292, 1048580, 2097156, 4194308, 8388612, 16777220, 33554436, 67108868, 134217732, 268435460, 536870916, 1073741828
Offset: 0

Author

Paul Curtz, Jun 30 2008

Keywords

Crossrefs

Cf. A000051 (m=0), A052548 (m=2), this sequence (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), A175162 (m=16), A175163 (m=32).

Programs

Formula

G.f.: (5 - 9*x)/((1 - x)*(1 - 2*x)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = 2*a(n-1) - 4 with a(0) = 5. - Vincenzo Librandi, Nov 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A173786(n,2) for n > 1.
a(n+2)*A028399(n) = A175164(2*n). (End)
From G. C. Greubel, Jul 08 2021: (Start)
a(n) = m*(2^(n-2) + 1), with m = 4.
E.g.f.: exp(2*x) + 4*exp(x). (End)

Extensions

More terms from Stefan Steinerberger, Aug 04 2008

A213191 Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192
Offset: 0

Author

Alois P. Heinz, Feb 28 2013

Keywords

Comments

In general, if k > 0 then column k is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 27 2018

Examples

			Square array A(n,k) begins:
:   0,  0,   0,   0,    0,     0,     0, ...
:   1,  1,   1,   1,    1,     1,     1, ...
:   3,  4,   6,  10,   18,    34,    66, ...
:   6,  9,  17,  39,  101,   279,   797, ...
:  12, 20,  44, 122,  392,  1370,  5024, ...
:  20, 35,  87, 287, 1119,  4775, 21447, ...
:  35, 66, 180, 660, 2904, 14196, 73920, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
              (b(n-p*m, p-1, k)), m=0..n/p)))
        end:
    A:= (n, k)-> b(n, n, k)[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)

Formula

A(n,k) = Sum_{j=1..n} A066633(n,j) * j^k.

A208447 Sum of the k-th powers of the numbers of standard Young tableaux over all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 4, 5, 1, 1, 2, 6, 10, 7, 1, 1, 2, 10, 24, 26, 11, 1, 1, 2, 18, 64, 120, 76, 15, 1, 1, 2, 34, 180, 596, 720, 232, 22, 1, 1, 2, 66, 520, 3060, 8056, 5040, 764, 30, 1, 1, 2, 130, 1524, 16076, 101160, 130432, 40320, 2620, 42
Offset: 0

Author

Alois P. Heinz, Feb 26 2012

Keywords

Examples

			A(3,2) = 1^2 + 2^2 + 1^2 = 6 = 3! because 3 has partitions 111, 21, 3 with 1, 2, 1 standard Young tableaux, respectively:
  .111.    . 21 . . . . . . .    . 3 . . . .
  +---+    +------+  +------+    +---------+
  | 1 |    | 1  2 |  | 1  3 |    | 1  2  3 |
  | 2 |    | 3 .--+  | 2 .--+    +---------+
  | 3 |    +---+     +---+
  +---+
Square array A(n,k) begins:
   1,  1,   1,    1,      1,       1,        1, ...
   1,  1,   1,    1,      1,       1,        1, ...
   2,  2,   2,    2,      2,       2,        2, ...
   3,  4,   6,   10,     18,      34,       66, ...
   5, 10,  24,   64,    180,     520,     1524, ...
   7, 26, 120,  596,   3060,   16076,    86100, ...
  11, 76, 720, 8056, 101160, 1379176, 19902600, ...
		

Crossrefs

Rows 0+1, 2, 3 give: A000012, A007395, A052548.
Main diagonal gives A319607.

Programs

  • Maple
    h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
           +add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
        end:
    g:= proc(n, i, k, l) `if`(n=0, h(l)^k, `if`(i<1, 0, g(n, i-1, k, l)
           + `if`(i>n, 0, g(n-i, i, k, [l[], i]))))
        end:
    A:= (n, k)-> `if`(n=0, 1, g(n, n, k, [])):
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1 + l[[i]] - j + Sum [If[l[[k]] >= j, 1, 0], { k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]]; g[n_, i_, k_, l_] := If[n == 0, h[l]^k, If[i < 1, 0, g[n, i-1, k, l] + If[i > n, 0, g[n-i, i, k, Append[l, i]]]]]; a [n_, k_] := If[n == 0, 1, g[n, n, k, {}]]; Table[Table[a[n, d-n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 11 2013, translated from Maple *)

A325973 Arithmetic mean of {sum of unitary divisors} and {sum of squarefree divisors}: a(n) = (1/2) * (A034448(n) + A048250(n)).

Original entry on oeis.org

1, 3, 4, 4, 6, 12, 8, 6, 7, 18, 12, 16, 14, 24, 24, 10, 18, 21, 20, 24, 32, 36, 24, 24, 16, 42, 16, 32, 30, 72, 32, 18, 48, 54, 48, 31, 38, 60, 56, 36, 42, 96, 44, 48, 42, 72, 48, 40, 29, 48, 72, 56, 54, 48, 72, 48, 80, 90, 60, 96, 62, 96, 56, 34, 84, 144, 68, 72, 96, 144, 72, 51, 74, 114, 64, 80, 96, 168, 80, 60, 43, 126
Offset: 1

Author

Antti Karttunen, Jun 02 2019

Keywords

Comments

This is not multiplicative: a(4) = 4, a(9) = 7, but a(36) = 31, not 28. However, the function acts multiplicatively on certain subsequences of natural numbers, like for example when restricted to A048107, where this sequence coincides with A326043.

Examples

			For n = 36, its divisors are 1, 2, 3, 4, 6, 9, 12, 18, 36. Of these, unitary divisors are 1, 4, 9 and 36, so A034448(36) = 1+4+9+36 = 50, while the squarefree divisors are 1, 2, 3 and 6, so A048250(36) = 1+2+3+6 = 12, thus a(36) = (50+12)/2 = 31.
For n = 495, its divisors are 1, 3, 5, 9, 11, 15, 33, 45, 55, 99, 165, 495. Of these, unitary are 1, 5, 9, 11, 45, 55, 99, 495, whose sum is A034448(495) = 720, while the squarefree divisors are 1, 3, 5, 11, 15, 33, 55, 165, and their sum is A048250(495) = 288. Thus a(495) = (720+288)/2 = 504. Also for 495, whose prime factorization is 3^2 * 5^1 * 11^1 this can be computed faster as the average of ((3^2)+1)*(5+1)*(11+1) and (3+1)*(5+1)*(11+1), thus (1/2)*(3+(3^2)+2)*(5+1)*(11+1) = 504.
		

Programs

Formula

a(n) = (1/2) * (A034448(n) + A048250(n)).
a(n) = A000203(n) - A325974(n).
a(n) = n + A325977(n).
a(A048107(n)) = A326043(A048107(n)).
For n >= 1, a(2^n) = A052548(n-1) = 2^(n-1) + 2.
For n >= 1, a(3^n) = A289521(n) = (3^n + 5)/2.
Sum_{k=1..n} a(k) ~ c * n^2, where c = (zeta(2)/zeta(3) + 1)/4 = 0.5921081944... . - Amiram Eldar, Feb 22 2024
Showing 1-10 of 69 results. Next