cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A028399 a(n) = 2^n - 4.

Original entry on oeis.org

0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2

Views

Author

Keywords

Comments

Number of permutations of [n] with 2 sequences.
Number of 2 X n binary matrices that avoid simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
The number of edges in the dual Edwards-Venn diagram graph with n-1 digits when n>2.
a(n) (n>=6) is the number of vertices in the molecular graph NS2[n-5], defined pictorially in the Ashrafi et al. reference (Fig. 2, where NS2[2] is shown). - Emeric Deutsch, May 16 2018
From Petros Hadjicostas, Aug 08 2019: (Start)
With regard to the comment above about a(n) being the "number of permutations of [n] with 2 sequences", we refer to Ex. 13 (pp. 260-261) of Comtet (1974), who uses the definition of a "séquence" given by André in several of his papers in the 19th century.
In the terminology of array A059427, these so-called "séquences" in permutations (defined by Comtet and André) are called "alternating runs" (or just "runs"). We discuss these so-called "séquences" below.
If b = (b_1, b_2, ..., b_n) is a permutation of [n], written in one-line notation (not in cycle notation), a "séquence" in a permutation of length l >= 2 (according to Comtet) is a maximal interval of integers {i, i+1, ..., i+l-1} for some i (where 1 <= i <= n-l+1) such that b_i < b_{i+1} < ... < b_{i+l-1} or b_i > b_{i+1} > ... > b_{i+l-1}. (The word "maximal" means that, in the first case, we have b_{i-1} > b_i and b_{i+l} < b_{i+l-1}, while in the second case, we have b_{i-1} < b_i and b_{i+l} > b_{i+l-1} provided b_{i-1} and b_{i+l} can be defined.)
When defining a "séquence", André (1884) actually refers to the list of terms (b_i, b_{i+1}, ..., b_{i+l-1}) rather than the corresponding index set {i, i+1, ..., i+l-1} (which is essentially the same thing).
For more details about these so-called "séquences" (or "alternate runs"), see the comments and examples for sequence A000708.
(End)
For n >= 1, a(n+2) is the number of shortest paths from (0,0) of a square grid to {(x,y): |x|+|y| = n} along the grid line. - Jianing Song, Aug 23 2021

Examples

			From _Petros Hadjicostas_, Aug 08 2019: (Start)
We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"):
   123 -> 123 (one),
   132 -> 13, 32 (two),
   213 -> 21, 13 (two),
   231 -> 23, 31 (two),
   312 -> 31, 12 (two),
   321 -> 321 (one).
Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.

Crossrefs

Column k = 2 of A059427.
Row n = 2 of A371064.

Programs

  • GAP
    a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
    
  • Maple
    seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
  • Mathematica
    2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n)=if(n<2, 0, 2^n-4)
    
  • Python
    def A028399(n): return (1<Chai Wah Wu, Jun 27 2023

Formula

O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A175164(2*n)/A140504(n+2);
a(2*n) = A052548(n)*A000918(n) for n > 0;
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021

Extensions

Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001

A057168 Next larger integer with same binary weight (number of 1 bits) as n.

Original entry on oeis.org

2, 4, 5, 8, 6, 9, 11, 16, 10, 12, 13, 17, 14, 19, 23, 32, 18, 20, 21, 24, 22, 25, 27, 33, 26, 28, 29, 35, 30, 39, 47, 64, 34, 36, 37, 40, 38, 41, 43, 48, 42, 44, 45, 49, 46, 51, 55, 65, 50, 52, 53, 56, 54, 57, 59, 67, 58, 60, 61, 71, 62, 79, 95, 128, 66, 68, 69, 72, 70, 73, 75
Offset: 1

Views

Author

Marc LeBrun, Sep 14 2000

Keywords

Comments

Binary weight is given by A000120.

Examples

			a(6)=9 since 6 has two one-bits (i.e., 6=2+4) and 9 is the next higher integer of binary weight two (7 is weight three and 8 is weight one).
		

References

  • Donald Knuth, The Art of Computer Programming, Vol. 4A, section 7.1.3, exercises 20-21.

Crossrefs

Programs

  • Haskell
    a057168 n = a057168_list !! (n-1)
    a057168_list = f 2 $ tail a000120_list where
       f x (z:zs) = (x + length (takeWhile (/= z) zs)) : f (x + 1) zs
    -- Reinhard Zumkeller, Aug 26 2012
    
  • Mathematica
    a[n_] := (bw = DigitCount[n, 2, 1]; k = n+1; While[ DigitCount[k, 2, 1] != bw, k++]; k); Table[a[n], {n, 1, 71}](* Jean-François Alcover, Nov 28 2011 *)
  • PARI
    a(n)=my(u=bitand(n,-n),v=u+n);(bitxor(v,n)/u)>>2+v \\ Charles R Greathouse IV, Oct 28 2009
    
  • PARI
    A057168(n)=n+bitxor(n,n+n=bitand(n,-n))\n\4+n \\ M. F. Hasler, Aug 27 2014
    
  • Python
    def a(n): u = n&-n; v = u+n; return (((v^n)//u)>>2)+v
    print([a(n) for n in range(1, 72)]) # Michael S. Branicky, Jul 10 2022 after Charles R Greathouse IV
    
  • Python
    def A057168(n): return ((n&~(b:=n+(a:=n&-n)))>>a.bit_length())^b # Chai Wah Wu, Mar 06 2025

Formula

From Reinhard Zumkeller, Aug 18 2008: (Start)
a(A000079(n)) = A000079(n+1);
a(A000051(n)) = A052548(n);
a(A052548(n)) = A140504(n);
a(A000225(n)) = A055010(n);
a(A007283(n)) = A000051(n+2). (End)
a(n) = MIN{m: A000120(m)=A000120(n) and m>n}. - Reinhard Zumkeller, Aug 15 2009
For k,m>0, a((2^k-1)*2^m) = 2^(k+m)+2^(k-1)-1. - Chai Wah Wu, Mar 07 2025
If n is odd, then a(n) = XOR(n,OR(a,a/2)) where a = AND(-n,n+1). - Chai Wah Wu, Mar 08 2025

A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Comments

Essentially the same as A048645. - T. D. Noe, Mar 28 2011

Examples

			Triangle begins as:
     2;
     3,    4;
     5,    6,    8;
     9,   10,   12,   16;
    17,   18,   20,   24,   32;
    33,   34,   36,   40,   48,   64;
    65,   66,   68,   72,   80,   96,  128;
   129,  130,  132,  136,  144,  160,  192,  256;
   257,  258,  260,  264,  272,  288,  320,  384,  512;
   513,  514,  516,  520,  528,  544,  576,  640,  768, 1024;
  1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
		

Crossrefs

Programs

  • Magma
    [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
  • PARI
    A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
    
  • Python
    from math import isqrt, comb
    def A173786(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return (1<Chai Wah Wu, Jun 20 2025
  • Sage
    flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
    

Formula

1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).

Extensions

Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010

A244673 Numbers k that divide 2^k + 4.

Original entry on oeis.org

1, 2, 3, 4, 20, 260, 740, 2132, 2180, 5252, 43364, 49268, 49737, 80660, 130052, 293620, 542852, 661412, 717027, 865460, 1564180, 2185220, 2192132, 2816372, 3784916, 4377620, 4427540, 5722004, 6307652, 6919460, 8765252, 9084452, 9498260, 9723611, 11346260, 12208820, 12220132
Offset: 1

Author

Derek Orr, Jul 14 2014

Keywords

Examples

			2^2 + 4 = 8 is divisible by 2. Thus 2 is a term of this sequence.
2^3 + 4 = 12 is divisible by 3. Thus 3 is a term of this sequence.
2^4 + 4 = 20 is divisible by 4. Thus 4 is a term of this sequence.
		

Crossrefs

The odd terms form A115976.

Programs

  • Maple
    A244673:=n->`if`(type((2^n+4)/n, integer), n, NULL): seq(A244673(n), n=1..10^5); # Wesley Ivan Hurt, Jul 15 2014
    Alternative:
    select(n -> 4 + 2&^n mod n = 0, [$1..10^5]); # Robert Israel, Jul 15 2014
  • Mathematica
    Select[Range[1000], Mod[2^# + 4, #] == 0 &] (* Alonso del Arte, Jul 14 2014 *)
    Join[{1,2,3},Select[Range[1223*10^4],PowerMod[2,#,#]==#-4&]] (* Harvey P. Dale, Jan 16 2023 *)
  • PARI
    for(n=1, 10^8, if(Mod(2,n)^n+4==0, print1(n, ", "))) \\ Jens Kruse Andersen, Jul 15 2014

A175161 a(n) = 8*(2^n + 1).

Original entry on oeis.org

16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832, 2147483656, 4294967304, 8589934600, 17179869192
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=1), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), this sequence (m=8), A175162 (m=16), A175163 (m=32).

Programs

  • Magma
    I:=[16,24]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    8*(2^Range[0, 40] + 1) (* G. C. Greubel, Jul 08 2021 *)
    LinearRecurrence[{3,-2},{16,24},40] (* Harvey P. Dale, Feb 10 2022 *)
  • Sage
    [8*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+3, 3).
a(n) = A175166(2*n)/A159741(n) for n > 0.
a(n) = 3*a(n-1) -2*a(n-2) with a(0)=16, a(1)=24. - Vincenzo Librandi, Dec 28 2010
G.f.: 8*(2 - 3*x)/((1-x)*(1-2*x)). - Chai Wah Wu, Jun 20 2020
a(n) = 8 * A000051(n). - Alois P. Heinz, Jun 20 2020
E.g.f.: 8*(exp(2*x) + exp(x)). - G. C. Greubel, Jul 08 2021

A175164 a(n) = 16*(2^n - 1).

Original entry on oeis.org

0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).

Programs

  • Magma
    I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
  • Python
    def A175164(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)

A175162 a(n) = 16*(2^n + 1).

Original entry on oeis.org

32, 48, 80, 144, 272, 528, 1040, 2064, 4112, 8208, 16400, 32784, 65552, 131088, 262160, 524304, 1048592, 2097168, 4194320, 8388624, 16777232, 33554448, 67108880, 134217744, 268435472, 536870928, 1073741840, 2147483664, 4294967312, 8589934608, 17179869200
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=1), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), this sequence (m=16), A175163 (m=32).
Cf. A173786.

Programs

  • Magma
    I:=[32,48]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,30] +1) (* or *) LinearRecurrence[{3,-2},{32,48},30] (* Harvey P. Dale, Jun 08 2017 *)
  • Sage
    [16*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+4, 4).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=32, a(1)=48. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*(2 - 3*x)/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) + exp(x)). (End)

A175163 a(n) = 32*(2^n + 1).

Original entry on oeis.org

64, 96, 160, 288, 544, 1056, 2080, 4128, 8224, 16416, 32800, 65568, 131104, 262176, 524320, 1048608, 2097184, 4194336, 8388640, 16777248, 33554464, 67108896, 134217760, 268435488, 536870944
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=0), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), A175162 (m=16), this sequence (m=32).
Cf. A173786.

Programs

  • Magma
    I:=[64,96]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    32*(2^Range[0,40] + 1) (* G. C. Greubel, Jul 08 2021 *)
  • Sage
    [32*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=64, a(1)=96. - Vincenzo Librandi, Dec 28 2010
G.f.: 32*(2 - 3*x)/((1 - x)*(1 - 2*x)). - Chai Wah Wu, Jul 24 2020
E.g.f.: 32*(exp(2*x) + exp(x)). - G. C. Greubel, Jul 08 2021

A254365 a(n) = 2^(n+2) + 3^n + 10.

Original entry on oeis.org

15, 21, 35, 69, 155, 381, 995, 2709, 7595, 21741, 63155, 185349, 547835, 1627101, 4848515, 14479989, 43308875, 129664461, 388469075, 1164358629, 3490978715, 10468741821, 31397836835, 94176733269, 282496645355, 847422827181, 2542134263795, 7626134355909
Offset: 0

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of third terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[2^(n+2) + 3^n + 10, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
  • PARI
    vector(30, n, n--; 2^(n+2) + 3^n + 10) \\ Colin Barker, Jan 30 2015

Formula

G.f.: -(74*x^2-69*x+15) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 30 2015
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). - Colin Barker, Jan 30 2015

A254366 a(n) = 4^n + 10*2^n + 4*3^n + 20.

Original entry on oeis.org

35, 56, 112, 272, 760, 2336, 7672, 26432, 94360, 346016, 1295032, 4923392, 18943960, 73568096, 287731192, 1131465152, 4467809560, 17697740576, 70271780152, 279532195712, 1113469251160, 4439908895456, 17717752225912, 70745400779072, 282604862628760
Offset: 0

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of fourth terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[4^n + 10*2^n + 4*3^n + 20, {n, 0, 28}] (* Michael De Vlieger, Jan 30 2015 *)
  • PARI
    vector(30, n, n--; 4^n + 10*2^n + 4*3^n + 20) \\ Colin Barker, Jan 30 2015

Formula

G.f.: -(638*x^3-777*x^2+294*x-35) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)). - Colin Barker, Jan 30 2015
a(n) = 10*a(n-1)-35*a(n-2)+50*a(n-3)-24*a(n-4). - Colin Barker, Jan 30 2015
Showing 1-10 of 19 results. Next