cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.

Original entry on oeis.org

2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Comments

Essentially the same as A048645. - T. D. Noe, Mar 28 2011

Examples

			Triangle begins as:
     2;
     3,    4;
     5,    6,    8;
     9,   10,   12,   16;
    17,   18,   20,   24,   32;
    33,   34,   36,   40,   48,   64;
    65,   66,   68,   72,   80,   96,  128;
   129,  130,  132,  136,  144,  160,  192,  256;
   257,  258,  260,  264,  272,  288,  320,  384,  512;
   513,  514,  516,  520,  528,  544,  576,  640,  768, 1024;
  1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
		

Crossrefs

Programs

  • Magma
    [2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
    
  • Mathematica
    Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
  • PARI
    A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
    
  • Python
    from math import isqrt, comb
    def A173786(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return (1<Chai Wah Wu, Jun 20 2025
  • Sage
    flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
    

Formula

1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A140513(n,k) - A173787(n,k), 0<=k<=n.
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,k) * A173787(n,k) = A173787(2*n,2*k), 0<=k<=n.
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).

Extensions

Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010

A140504 a(n) = 2^n + 4.

Original entry on oeis.org

5, 6, 8, 12, 20, 36, 68, 132, 260, 516, 1028, 2052, 4100, 8196, 16388, 32772, 65540, 131076, 262148, 524292, 1048580, 2097156, 4194308, 8388612, 16777220, 33554436, 67108868, 134217732, 268435460, 536870916, 1073741828
Offset: 0

Author

Paul Curtz, Jun 30 2008

Keywords

Crossrefs

Cf. A000051 (m=0), A052548 (m=2), this sequence (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), A175162 (m=16), A175163 (m=32).

Programs

Formula

G.f.: (5 - 9*x)/((1 - x)*(1 - 2*x)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = 2*a(n-1) - 4 with a(0) = 5. - Vincenzo Librandi, Nov 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A173786(n,2) for n > 1.
a(n+2)*A028399(n) = A175164(2*n). (End)
From G. C. Greubel, Jul 08 2021: (Start)
a(n) = m*(2^(n-2) + 1), with m = 4.
E.g.f.: exp(2*x) + 4*exp(x). (End)

Extensions

More terms from Stefan Steinerberger, Aug 04 2008

A159741 a(n) = 8*(2^n - 1).

Original entry on oeis.org

8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1

Author

Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

Keywords

Comments

Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The first subdiagonal is essentially A000225, followed by essentially A036563.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013

Examples

			From _R. J. Mathar_, Apr 22 2009: (Start)
The base table is
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.2..2....2....2....2....2....2....2....2....2....2....2....2....2
.0..2....3....4....4....4....4....4....4....4....4....4....4....4
.0..2....5....7....8....8....8....8....8....8....8....8....8....8
.0..2....8...13...15...16...16...16...16...16...16...16...16...16
.0..2...13...24...29...31...32...32...32...32...32...32...32...32
.0..2...21...44...56...61...63...64...64...64...64...64...64...64
.0..2...34...81..108..120..125..127..128..128..128..128..128..128
.0..2...55..149..208..236..248..253..255..256..256..256..256..256
.0..2...89..274..401..464..492..504..509..511..512..512..512..512
.0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024
.0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048
.0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096
Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
		

Programs

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
a(n) = A173787(n+3,3) = A175166(2*n)/A175161(n). - Reinhard Zumkeller, Feb 28 2010
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
a(n) = 8*A000225(n) = 4*A000918(n+1) = 2*A028399(n+2). (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009

A175166 a(n) = 64*(2^n - 1).

Original entry on oeis.org

0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), A175165 (m=32), this sequence (m=64).

Programs

  • Magma
    I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
  • Python
    def A175166(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(2*n) = A175161(n)*A159741(n) for n > 0.
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)

A175162 a(n) = 16*(2^n + 1).

Original entry on oeis.org

32, 48, 80, 144, 272, 528, 1040, 2064, 4112, 8208, 16400, 32784, 65552, 131088, 262160, 524304, 1048592, 2097168, 4194320, 8388624, 16777232, 33554448, 67108880, 134217744, 268435472, 536870928, 1073741840, 2147483664, 4294967312, 8589934608, 17179869200
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=1), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), this sequence (m=16), A175163 (m=32).
Cf. A173786.

Programs

  • Magma
    I:=[32,48]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,30] +1) (* or *) LinearRecurrence[{3,-2},{32,48},30] (* Harvey P. Dale, Jun 08 2017 *)
  • Sage
    [16*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+4, 4).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=32, a(1)=48. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*(2 - 3*x)/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) + exp(x)). (End)

A175163 a(n) = 32*(2^n + 1).

Original entry on oeis.org

64, 96, 160, 288, 544, 1056, 2080, 4128, 8224, 16416, 32800, 65568, 131104, 262176, 524320, 1048608, 2097184, 4194336, 8388640, 16777248, 33554464, 67108896, 134217760, 268435488, 536870944
Offset: 0

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=0), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), A175161 (m=8), A175162 (m=16), this sequence (m=32).
Cf. A173786.

Programs

  • Magma
    I:=[64,96]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    32*(2^Range[0,40] + 1) (* G. C. Greubel, Jul 08 2021 *)
  • Sage
    [32*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=64, a(1)=96. - Vincenzo Librandi, Dec 28 2010
G.f.: 32*(2 - 3*x)/((1 - x)*(1 - 2*x)). - Chai Wah Wu, Jul 24 2020
E.g.f.: 32*(exp(2*x) + exp(x)). - G. C. Greubel, Jul 08 2021
Showing 1-6 of 6 results.