A173786 Triangle read by rows: T(n,k) = 2^n + 2^k, 0 <= k <= n.
2, 3, 4, 5, 6, 8, 9, 10, 12, 16, 17, 18, 20, 24, 32, 33, 34, 36, 40, 48, 64, 65, 66, 68, 72, 80, 96, 128, 129, 130, 132, 136, 144, 160, 192, 256, 257, 258, 260, 264, 272, 288, 320, 384, 512, 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024, 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048
Offset: 0
Examples
Triangle begins as: 2; 3, 4; 5, 6, 8; 9, 10, 12, 16; 17, 18, 20, 24, 32; 33, 34, 36, 40, 48, 64; 65, 66, 68, 72, 80, 96, 128; 129, 130, 132, 136, 144, 160, 192, 256; 257, 258, 260, 264, 272, 288, 320, 384, 512; 513, 514, 516, 520, 528, 544, 576, 640, 768, 1024; 1025, 1026, 1028, 1032, 1040, 1056, 1088, 1152, 1280, 1536, 2048;
Links
- T. D. Noe, Rows n = 0..100 of triangle, flattened
- Wawrzyniec Bieniawski, Piotr Masierak, Andrzej Tomski, and Szymon Ćukaszyk, Assembly Theory - Formalizing Assembly Spaces and Discovering Patterns and Bounds, Preprints.org (2025).
Programs
-
Magma
[2^n + 2^k: k in [0..n], n in [0..12]]; // G. C. Greubel, Jul 07 2021
-
Mathematica
Flatten[Table[2^n + 2^m, {n,0,10}, {m, 0, n}]] (* T. D. Noe, Jun 18 2013 *)
-
PARI
A173786(n) = { my(c = (sqrtint(8*n + 1) - 1) \ 2); 1 << c + 1 << (n - binomial(c + 1, 2)); }; \\ Antti Karttunen, Feb 29 2024, after David A. Corneth's PARI-program in A048645
-
Python
from math import isqrt, comb def A173786(n): a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1)) return (1<Chai Wah Wu, Jun 20 2025
-
Sage
flatten([[2^n + 2^k for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jul 07 2021
Formula
1 <= A000120(T(n,k)) <= 2.
For n>0, 0<=kA048645(n+1,k+2) and T(n,n) = A048645(n+2,1).
Row sums give A006589(n).
Central terms give A161168(n).
T(2*n+1,n) = A007582(n+1).
T(2*n+1,n+1) = A028403(n+1).
T(n,k) = A059268(n+1,k+1) + A173787(n,k), 0
T(n,0) = A000051(n).
T(n,1) = A052548(n) for n>0.
T(n,2) = A140504(n) for n>1.
T(n,3) = A175161(n-3) for n>2.
T(n,4) = A175162(n-4) for n>3.
T(n,5) = A175163(n-5) for n>4.
T(n,n-4) = A110287(n-4) for n>3.
T(n,n-3) = A005010(n-3) for n>2.
T(n,n-2) = A020714(n-2) for n>1.
T(n,n-1) = A007283(n-1) for n>0.
T(n,n) = 2*A000079(n).
Extensions
Typo in first comment line fixed by Reinhard Zumkeller, Mar 07 2010
A140504 a(n) = 2^n + 4.
5, 6, 8, 12, 20, 36, 68, 132, 260, 516, 1028, 2052, 4100, 8196, 16388, 32772, 65540, 131076, 262148, 524292, 1048580, 2097156, 4194308, 8388612, 16777220, 33554436, 67108868, 134217732, 268435460, 536870916, 1073741828
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[2^n +4: n in [0..30]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
Table[2^n + 4, {n, 0, 30}] (* Stefan Steinerberger, Aug 04 2008 *) LinearRecurrence[{3,-2}, {5,6}, 40] (* Harvey P. Dale, May 26 2018 *)
-
PARI
a(n)=2^n+4 \\ Charles R Greathouse IV, Dec 21 2011
-
Sage
[2^n + 4 for n in range(0,31)] # Zerinvary Lajos, May 31 2009
Formula
G.f.: (5 - 9*x)/((1 - x)*(1 - 2*x)). - Jaume Oliver Lafont, Aug 30 2009
a(n) = 2*a(n-1) - 4 with a(0) = 5. - Vincenzo Librandi, Nov 24 2009
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A173786(n,2) for n > 1.
From G. C. Greubel, Jul 08 2021: (Start)
a(n) = m*(2^(n-2) + 1), with m = 4.
E.g.f.: exp(2*x) + 4*exp(x). (End)
Extensions
More terms from Stefan Steinerberger, Aug 04 2008
A159741 a(n) = 8*(2^n - 1).
8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1
Comments
Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013
Examples
From _R. J. Mathar_, Apr 22 2009: (Start) The base table is .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .1..1....1....1....1....1....1....1....1....1....1....1....1....1 .2..2....2....2....2....2....2....2....2....2....2....2....2....2 .0..2....3....4....4....4....4....4....4....4....4....4....4....4 .0..2....5....7....8....8....8....8....8....8....8....8....8....8 .0..2....8...13...15...16...16...16...16...16...16...16...16...16 .0..2...13...24...29...31...32...32...32...32...32...32...32...32 .0..2...21...44...56...61...63...64...64...64...64...64...64...64 .0..2...34...81..108..120..125..127..128..128..128..128..128..128 .0..2...55..149..208..236..248..253..255..256..256..256..256..256 .0..2...89..274..401..464..492..504..509..511..512..512..512..512 .0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024 .0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048 .0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096 Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
Links
- G. C. Greubel, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
[8*(2^n -1): n in [1..50]]; // G. C. Greubel, May 22 2018
-
Maple
T := proc(n,m) option remember ; if n < 0 then 0; elif n <= 1 then 1; elif n = 2 then 2; else add(procname(n-i,m),i=1..m) ; fi: end: A159741 := proc(n) T(n+4,n+1) ; end: seq(A159741(n),n=1..40) ; # R. J. Mathar, Apr 22 2009
-
Mathematica
Table[8(2^n-1),{n,60}] (* Vladimir Joseph Stephan Orlovsky, Apr 18 2011 *) LinearRecurrence[{3,-2},{8,24},30] (* Harvey P. Dale, Jan 01 2019 *)
-
PARI
a(n)=8*(2^n-1) \\ Charles R Greathouse IV, Sep 24 2015
Formula
From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
Extensions
More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009
A175166 a(n) = 64*(2^n - 1).
0, 64, 192, 448, 960, 1984, 4032, 8128, 16320, 32704, 65472, 131008, 262080, 524224, 1048512, 2097088, 4194240, 8388544, 16777152, 33554368, 67108800, 134217664, 268435392, 536870848, 1073741760
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[0,64]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
LinearRecurrence[{3,-2},{0,64},30] (* Harvey P. Dale, Apr 08 2015 *)
-
Python
def A175166(n): return (1<
Chai Wah Wu, Jun 27 2023 -
Sage
[64*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = 2^(n+6) - 64.
a(n) = A173787(n+6, 6).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=64. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 64*x/((1-x)*(1-2*x)).
E.g.f.: 64*(exp(2*x) - exp(x)). (End)
A175162 a(n) = 16*(2^n + 1).
32, 48, 80, 144, 272, 528, 1040, 2064, 4112, 8208, 16400, 32784, 65552, 131088, 262160, 524304, 1048592, 2097168, 4194320, 8388624, 16777232, 33554448, 67108880, 134217744, 268435472, 536870928, 1073741840, 2147483664, 4294967312, 8589934608, 17179869200
Offset: 0
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[32,48]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
16*(2^Range[0,30] +1) (* or *) LinearRecurrence[{3,-2},{32,48},30] (* Harvey P. Dale, Jun 08 2017 *)
-
Sage
[16*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = A173786(n+4, 4).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=32, a(1)=48. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*(2 - 3*x)/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) + exp(x)). (End)
A175163 a(n) = 32*(2^n + 1).
64, 96, 160, 288, 544, 1056, 2080, 4128, 8224, 16416, 32800, 65568, 131104, 262176, 524320, 1048608, 2097184, 4194336, 8388640, 16777248, 33554464, 67108896, 134217760, 268435488, 536870944
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
Magma
I:=[64,96]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
-
Mathematica
32*(2^Range[0,40] + 1) (* G. C. Greubel, Jul 08 2021 *)
-
Sage
[32*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
Formula
a(n) = A173786(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=64, a(1)=96. - Vincenzo Librandi, Dec 28 2010
G.f.: 32*(2 - 3*x)/((1 - x)*(1 - 2*x)). - Chai Wah Wu, Jul 24 2020
E.g.f.: 32*(exp(2*x) + exp(x)). - G. C. Greubel, Jul 08 2021
Comments