cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A173787 Triangle read by rows: T(n,k) = 2^n - 2^k, 0 <= k <= n.

Original entry on oeis.org

0, 1, 0, 3, 2, 0, 7, 6, 4, 0, 15, 14, 12, 8, 0, 31, 30, 28, 24, 16, 0, 63, 62, 60, 56, 48, 32, 0, 127, 126, 124, 120, 112, 96, 64, 0, 255, 254, 252, 248, 240, 224, 192, 128, 0, 511, 510, 508, 504, 496, 480, 448, 384, 256, 0, 1023, 1022, 1020, 1016, 1008, 992, 960, 896, 768, 512, 0
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Examples

			Triangle begins as:
   0;
   1,  0;
   3,  2,  0;
   7,  6,  4,  0;
  15, 14, 12,  8,  0;
  31, 30, 28, 24, 16, 0;
		

Programs

  • Magma
    [2^n -2^k: k in [0..n], n in [0..15]]; // G. C. Greubel, Jul 13 2021
    
  • Mathematica
    Table[2^n -2^k, {n,0,15}, {k,0,n}]//Flatten (* G. C. Greubel, Jul 13 2021 *)
  • Sage
    flatten([[2^n -2^k for k in (0..n)] for n in (0..15)]) # G. C. Greubel, Jul 13 2021

Formula

A000120(T(n,k)) = A025581(n,k).
Row sums give A000337.
Central terms give A020522.
T(2*n+1, n) = A006516(n+1).
T(2*n+3, n+2) = A059153(n).
T(n, k) = A140513(n,k) - A173786(n,k), 0 <= k <= n.
T(n, k) = A173786(n,k) - A059268(n+1,k+1), 0 < k <= n.
T(2*n, 2*k) = T(n,k) * A173786(n,k), 0 <= k <= n.
T(n, 0) = A000225(n).
T(n, 1) = A000918(n) for n>0.
T(n, 2) = A028399(n) for n>1.
T(n, 3) = A159741(n-3) for n>3.
T(n, 4) = A175164(n-4) for n>4.
T(n, 5) = A175165(n-5) for n>5.
T(n, 6) = A175166(n-6) for n>6.
T(n, n-4) = A110286(n-4) for n>3.
T(n, n-3) = A005009(n-3) for n>2.
T(n, n-2) = A007283(n-2) for n>1.
T(n, n-1) = A000079(n-1) for n>0.
T(n, n) = A000004(n).

A159741 a(n) = 8*(2^n - 1).

Original entry on oeis.org

8, 24, 56, 120, 248, 504, 1016, 2040, 4088, 8184, 16376, 32760, 65528, 131064, 262136, 524280, 1048568, 2097144, 4194296, 8388600, 16777208, 33554424, 67108856, 134217720, 268435448, 536870904, 1073741816, 2147483640, 4294967288, 8589934584, 17179869176, 34359738360
Offset: 1

Views

Author

Al Hakanson (hawkuu(AT)gmail.com), Apr 20 2009

Keywords

Comments

Fifth diagonal of the array which contains m-acci numbers in the m-th row.
The base array is constructed from m-acci numbers starting each with 1, 1, and 2 and filling one row of the table (see the examples).
The main and the upper diagonals of the table are the powers of 2, A000079.
The first subdiagonal is essentially A000225, followed by essentially A036563.
The next subdiagonal is this sequence here, followed by A159742, A159743, A159744, A159746, A159747, A159748.
a(n) written in base 2: 1000, 11000, 111000, 1111000, ..., i.e., n times 1 and 3 times 0 (A161770). - Jaroslav Krizek, Jun 18 2009
Also numbers for which n^8/(n+8) is an integer. - Vicente Izquierdo Gomez, Jan 03 2013

Examples

			From _R. J. Mathar_, Apr 22 2009: (Start)
The base table is
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.1..1....1....1....1....1....1....1....1....1....1....1....1....1
.2..2....2....2....2....2....2....2....2....2....2....2....2....2
.0..2....3....4....4....4....4....4....4....4....4....4....4....4
.0..2....5....7....8....8....8....8....8....8....8....8....8....8
.0..2....8...13...15...16...16...16...16...16...16...16...16...16
.0..2...13...24...29...31...32...32...32...32...32...32...32...32
.0..2...21...44...56...61...63...64...64...64...64...64...64...64
.0..2...34...81..108..120..125..127..128..128..128..128..128..128
.0..2...55..149..208..236..248..253..255..256..256..256..256..256
.0..2...89..274..401..464..492..504..509..511..512..512..512..512
.0..2..144..504..773..912..976.1004.1016.1021.1023.1024.1024.1024
.0..2..233..927.1490.1793.1936.2000.2028.2040.2045.2047.2048.2048
.0..2..377.1705.2872.3525.3840.3984.4048.4076.4088.4093.4095.4096
Columns: A000045, A000073, A000078, A001591, A001592 etc. (End)
		

Crossrefs

Programs

Formula

From R. J. Mathar, Apr 22 2009: (Start)
a(n) = 3*a(n-1) - 2*a(n-2).
a(n) = 8*(2^n-1).
G.f.: 8*x/((2*x-1)*(x-1)). (End)
From Jaroslav Krizek, Jun 18 2009: (Start)
a(n) = Sum_{i=3..(n+2)} 2^i.
a(n) = Sum_{i=1..n} 2^(i+2).
a(n) = a(n-1) + 2^(n+2) for n >= 2. (End)
a(n) = A173787(n+3,3) = A175166(2*n)/A175161(n). - Reinhard Zumkeller, Feb 28 2010
From Elmo R. Oliveira, Jun 15 2025: (Start)
E.g.f.: 8*exp(x)*(exp(x) - 1).
a(n) = 8*A000225(n) = 4*A000918(n+1) = 2*A028399(n+2). (End)

Extensions

More terms from R. J. Mathar, Apr 22 2009
Edited by Al Hakanson (hawkuu(AT)gmail.com), May 11 2009
Comments claiming negative entries deleted by R. J. Mathar, Aug 24 2009

A175161 a(n) = 8*(2^n + 1).

Original entry on oeis.org

16, 24, 40, 72, 136, 264, 520, 1032, 2056, 4104, 8200, 16392, 32776, 65544, 131080, 262152, 524296, 1048584, 2097160, 4194312, 8388616, 16777224, 33554440, 67108872, 134217736, 268435464, 536870920, 1073741832, 2147483656, 4294967304, 8589934600, 17179869192
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n + 1): A000051 (m=1), A052548 (m=2), A140504 (m=4), A153973 (m=6), A231643 (m=5), this sequence (m=8), A175162 (m=16), A175163 (m=32).

Programs

  • Magma
    I:=[16,24]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    8*(2^Range[0, 40] + 1) (* G. C. Greubel, Jul 08 2021 *)
    LinearRecurrence[{3,-2},{16,24},40] (* Harvey P. Dale, Feb 10 2022 *)
  • Sage
    [8*(2^n +1) for n in (0..40)] # G. C. Greubel, Jul 08 2021

Formula

a(n) = A173786(n+3, 3).
a(n) = A175166(2*n)/A159741(n) for n > 0.
a(n) = 3*a(n-1) -2*a(n-2) with a(0)=16, a(1)=24. - Vincenzo Librandi, Dec 28 2010
G.f.: 8*(2 - 3*x)/((1-x)*(1-2*x)). - Chai Wah Wu, Jun 20 2020
a(n) = 8 * A000051(n). - Alois P. Heinz, Jun 20 2020
E.g.f.: 8*(exp(2*x) + exp(x)). - G. C. Greubel, Jul 08 2021

A175164 a(n) = 16*(2^n - 1).

Original entry on oeis.org

0, 16, 48, 112, 240, 496, 1008, 2032, 4080, 8176, 16368, 32752, 65520, 131056, 262128, 524272, 1048560, 2097136, 4194288, 8388592, 16777200, 33554416, 67108848, 134217712, 268435440
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), this sequence (m=16), A175165 (m=32), A175166 (m=64).

Programs

  • Magma
    I:=[0,16]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    16*(2^Range[0,40] - 1) (* G. C. Greubel, Jul 08 2021 *)
  • Python
    def A175164(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [16*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+4) - 16.
a(n) = A173787(n+4, 4).
a(2*n) = A140504(n+2)*A028399(n).
a(n) = 3*a(n-1) - 2*a(n-2), a(0)=0, a(1)=16. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 16*x/((1-x)*(1-2*x)).
E.g.f.: 16*(exp(2*x) - exp(x)). (End)

A175165 a(n) = 32*(2^n - 1).

Original entry on oeis.org

0, 32, 96, 224, 480, 992, 2016, 4064, 8160, 16352, 32736, 65504, 131040, 262112, 524256, 1048544, 2097120, 4194272, 8388576, 16777184, 33554400, 67108832, 134217696, 268435424, 536870880
Offset: 0

Views

Author

Reinhard Zumkeller, Feb 28 2010

Keywords

Crossrefs

Sequences of the form m*(2^n - 1): A000225 (m=1), A000918 (m=2), A068156 (m=3), A028399 (m=4), A068293 (m=6), A159741 (m=8), A175164 (m=16), this sequence (m=32), A175166 (m=64).
Cf. A173787.

Programs

  • Magma
    I:=[0,32]; [n le 2 select I[n] else 3*Self(n-1) - 2*Self(n-2): n in [1..41]]; // G. C. Greubel, Jul 08 2021
    
  • Mathematica
    32(2^Range[0,30] -1) (* or *) LinearRecurrence[{3,-2},{0,32},30] (* Harvey P. Dale, Mar 23 2015 *)
  • Python
    def A175165(n): return (1<Chai Wah Wu, Jun 27 2023
  • Sage
    [32*(2^n -1) for n in (0..40)] # G. C. Greubel, Jul 08 2021
    

Formula

a(n) = 2^(n+5) - 32.
a(n) = A173787(n+5, 5).
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=32. - Vincenzo Librandi, Dec 28 2010
From G. C. Greubel, Jul 08 2021: (Start)
G.f.: 32*x/((1-x)*(1-2*x)).
E.g.f.: 32*(exp(2*x) - exp(x)). (End)
Showing 1-5 of 5 results.