cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A000079 Powers of 2: a(n) = 2^n.

Original entry on oeis.org

1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048, 4096, 8192, 16384, 32768, 65536, 131072, 262144, 524288, 1048576, 2097152, 4194304, 8388608, 16777216, 33554432, 67108864, 134217728, 268435456, 536870912, 1073741824, 2147483648, 4294967296, 8589934592
Offset: 0

Views

Author

Keywords

Comments

2^0 = 1 is the only odd power of 2.
Number of subsets of an n-set.
There are 2^(n-1) compositions (ordered partitions) of n (see for example Riordan). This is the unlabeled analog of the preferential labelings sequence A000670.
This is also the number of weakly unimodal permutations of 1..n + 1, that is, permutations with exactly one local maximum. E.g., a(4) = 16: 12345, 12354, 12453, 12543, 13452, 13542, 14532 and 15432 and their reversals. - Jon Perry, Jul 27 2003 [Proof: see next line! See also A087783.]
Proof: n must appear somewhere and there are 2^(n-1) possible choices for the subset that precedes it. These must appear in increasing order and the rest must follow n in decreasing order. QED. - N. J. A. Sloane, Oct 26 2003
a(n+1) is the smallest number that is not the sum of any number of (distinct) earlier terms.
Same as Pisot sequences E(1, 2), L(1, 2), P(1, 2), T(1, 2). See A008776 for definitions of Pisot sequences.
With initial 1 omitted, same as Pisot sequences E(2, 4), L(2, 4), P(2, 4), T(2, 4). - David W. Wilson
Not the sum of two or more consecutive numbers. - Lekraj Beedassy, May 14 2004
Least deficient or near-perfect numbers (i.e., n such that sigma(n) = A000203(n) = 2n - 1). - Lekraj Beedassy, Jun 03 2004. [Comment from Max Alekseyev, Jan 26 2005: All the powers of 2 are least deficient numbers but it is not known if there exists a least deficient number that is not a power of 2.]
Almost-perfect numbers referred to as least deficient or slightly defective (Singh 1997) numbers. Does "near-perfect numbers" refer to both almost-perfect numbers (sigma(n) = 2n - 1) and quasi-perfect numbers (sigma(n) = 2n + 1)? There are no known quasi-perfect or least abundant or slightly excessive (Singh 1997) numbers.
The sum of the numbers in the n-th row of Pascal's triangle; the sum of the coefficients of x in the expansion of (x+1)^n.
The Collatz conjecture (the hailstone sequence will eventually reach the number 1, regardless of which positive integer is chosen initially) may be restated as (the hailstone sequence will eventually reach a power of 2, regardless of which positive integer is chosen initially).
The only hailstone sequence which doesn't rebound (except "on the ground"). - Alexandre Wajnberg, Jan 29 2005
With p(n) as the number of integer partitions of n, p(i) is the number of parts of the i-th partition of n, d(i) is the number of different parts of the i-th partition of n, m(i,j) is the multiplicity of the j-th part of the i-th partition of n, one has: a(n) = Sum_{i = 1..p(n)} (p(i)! / (Product_{j=1..d(i)} m(i,j)!)). - Thomas Wieder, May 18 2005
The number of binary relations on an n-element set that are both symmetric and antisymmetric. Also the number of binary relations on an n-element set that are symmetric, antisymmetric and transitive.
The first differences are the sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
a(n) is the largest number with shortest addition chain involving n additions. - David W. Wilson, Apr 23 2006
Beginning with a(1) = 0, numbers not equal to the sum of previous distinct natural numbers. - Giovanni Teofilatto, Aug 06 2006
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n} -> {1, 2} such that for a fixed x in {1, 2, ..., n} and a fixed y in {1, 2} we have f(x) != y. - Aleksandar M. Janjic and Milan Janjic, Mar 27 2007
Let P(A) be the power set of an n-element set A. Then a(n) is the number of pairs of elements {x,y} of P(A) for which x = y. - Ross La Haye, Jan 09 2008
a(n) is the number of permutations on [n+1] such that every initial segment is an interval of integers. Example: a(3) counts 1234, 2134, 2314, 2341, 3214, 3241, 3421, 4321. The map "p -> ascents of p" is a bijection from these permutations to subsets of [n]. An ascent of a permutation p is a position i such that p(i) < p(i+1). The permutations shown map to 123, 23, 13, 12, 3, 2, 1 and the empty set respectively. - David Callan, Jul 25 2008
2^(n-1) is the largest number having n divisors (in the sense of A077569); A005179(n) is the smallest. - T. D. Noe, Sep 02 2008
a(n) appears to match the number of divisors of the modified primorials (excluding 2, 3 and 5). Very limited range examined, PARI example shown. - Bill McEachen, Oct 29 2008
Successive k such that phi(k)/k = 1/2, where phi is Euler's totient function. - Artur Jasinski, Nov 07 2008
A classical transform consists (for general a(n)) in swapping a(2n) and a(2n+1); examples for Jacobsthal A001045 and successive differences: A092808, A094359, A140505. a(n) = A000079 leads to 2, 1, 8, 4, 32, 16, ... = A135520. - Paul Curtz, Jan 05 2009
This is also the (L)-sieve transform of {2, 4, 6, 8, ..., 2n, ...} = A005843. (See A152009 for the definition of the (L)-sieve transform.) - John W. Layman, Jan 23 2009
a(n) = a(n-1)-th even natural number (A005843) for n > 1. - Jaroslav Krizek, Apr 25 2009
For n >= 0, a(n) is the number of leaves in a complete binary tree of height n. For n > 0, a(n) is the number of nodes in an n-cube. - K.V.Iyer, May 04 2009
Permutations of n+1 elements where no element is more than one position right of its original place. For example, there are 4 such permutations of three elements: 123, 132, 213, and 312. The 8 such permutations of four elements are 1234, 1243, 1324, 1423, 2134, 2143, 3124, and 4123. - Joerg Arndt, Jun 24 2009
Catalan transform of A099087. - R. J. Mathar, Jun 29 2009
a(n) written in base 2: 1,10,100,1000,10000,..., i.e., (n+1) times 1, n times 0 (A011557(n)). - Jaroslav Krizek, Aug 02 2009
Or, phi(n) is equal to the number of perfect partitions of n. - Juri-Stepan Gerasimov, Oct 10 2009
These are the 2-smooth numbers, positive integers with no prime factors greater than 2. - Michael B. Porter, Oct 04 2009
A064614(a(n)) = A000244(n) and A064614(m) < A000244(n) for m < a(n). - Reinhard Zumkeller, Feb 08 2010
a(n) is the largest number m such that the number of steps of iterations of {r - (largest divisor d < r)} needed to reach 1 starting at r = m is equal to n. Example (a(5) = 32): 32 - 16 = 16; 16 - 8 = 8; 8 - 4 = 4; 4 - 2 = 2; 2 - 1 = 1; number 32 has 5 steps and is the largest such number. See A105017, A064097, A175125. - Jaroslav Krizek, Feb 15 2010
a(n) is the smallest proper multiple of a(n-1). - Dominick Cancilla, Aug 09 2010
The powers-of-2 triangle T(n, k), n >= 0 and 0 <= k <= n, begins with: {1}; {2, 4}; {8, 16, 32}; {64, 128, 256, 512}; ... . The first left hand diagonal T(n, 0) = A006125(n + 1), the first right hand diagonal T(n, n) = A036442(n + 1) and the center diagonal T(2*n, n) = A053765(n + 1). Some triangle sums, see A180662, are: Row1(n) = A122743(n), Row2(n) = A181174(n), Fi1(n) = A181175(n), Fi2(2*n) = A181175(2*n) and Fi2(2*n + 1) = 2*A181175(2*n + 1). - Johannes W. Meijer, Oct 10 2010
Records in the number of prime factors. - Juri-Stepan Gerasimov, Mar 12 2011
Row sums of A152538. - Gary W. Adamson, Dec 10 2008
A078719(a(n)) = 1; A006667(a(n)) = 0. - Reinhard Zumkeller, Oct 08 2011
The compositions of n in which each natural number is colored by one of p different colors are called p-colored compositions of n. For n>=1, a(n) equals the number of 2-colored compositions of n such that no adjacent parts have the same color. - Milan Janjic, Nov 17 2011
Equals A001405 convolved with its right-shifted variant: (1 + 2x + 4x^2 + ...) = (1 + x + 2x^2 + 3x^3 + 6x^4 + 10x^5 + ...) * (1 + x + x^2 + 2x^3 + 3x^4 + 6x^5 + ...). - Gary W. Adamson, Nov 23 2011
The number of odd-sized subsets of an n+1-set. For example, there are 2^3 odd-sized subsets of {1, 2, 3, 4}, namely {1}, {2}, {3}, {4}, {1, 2, 3}, {1, 2, 4}, {1, 3, 4}, and {2, 3, 4}. Also, note that 2^n = Sum_{k=1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
a(n) is the number of 1's in any row of Pascal's triangle (mod 2) whose row number has exactly n 1's in its binary expansion (see A007318 and A047999). (The result of putting together A001316 and A000120.) - Marcus Jaiclin, Jan 31 2012
A204455(k) = 1 if and only if k is in this sequence. - Wolfdieter Lang, Feb 04 2012
For n>=1 apparently the number of distinct finite languages over a unary alphabet, whose minimum regular expression has alphabetic width n (verified up to n=17), see the Gruber/Lee/Shallit link. - Hermann Gruber, May 09 2012
First differences of A000225. - Omar E. Pol, Feb 19 2013
This is the lexicographically earliest sequence which contains no arithmetic progression of length 3. - Daniel E. Frohardt, Apr 03 2013
a(n-2) is the number of bipartitions of {1..n} (i.e., set partitions into two parts) such that 1 and 2 are not in the same subset. - Jon Perry, May 19 2013
Numbers n such that the n-th cyclotomic polynomial has a root mod 2; numbers n such that the n-th cyclotomic polynomial has an even number of odd coefficients. - Eric M. Schmidt, Jul 31 2013
More is known now about non-power-of-2 "Almost Perfect Numbers" as described in Dagal. - Jonathan Vos Post, Sep 01 2013
Number of symmetric Ferrers diagrams that fit into an n X n box. - Graham H. Hawkes, Oct 18 2013
Numbers n such that sigma(2n) = 2n + sigma(n). - Jahangeer Kholdi, Nov 23 2013
a(1), ..., a(floor(n/2)) are all values of permanent on set of square (0,1)-matrices of order n>=2 with row and column sums 2. - Vladimir Shevelev, Nov 26 2013
Numbers whose base-2 expansion has exactly one bit set to 1, and thus has base-2 sum of digits equal to one. - Stanislav Sykora, Nov 29 2013
A072219(a(n)) = 1. - Reinhard Zumkeller, Feb 20 2014
a(n) is the largest number k such that (k^n-2)/(k-2) is an integer (for n > 1); (k^a(n)+1)/(k+1) is never an integer (for k > 1 and n > 0). - Derek Orr, May 22 2014
If x = A083420(n), y = a(n+1) and z = A087289(n), then x^2 + 2*y^2 = z^2. - Vincenzo Librandi, Jun 09 2014
The mini-sequence b(n) = least number k > 0 such that 2^k ends in n identical digits is given by {1, 18, 39}. The repeating digits are {2, 4, 8} respectively. Note that these are consecutive powers of 2 (2^1, 2^2, 2^3), and these are the only powers of 2 (2^k, k > 0) that are only one digit. Further, this sequence is finite. The number of n-digit endings for a power of 2 with n or more digits id 4*5^(n-1). Thus, for b(4) to exist, one only needs to check exponents up to 4*5^3 = 500. Since b(4) does not exist, it is clear that no other number will exist. - Derek Orr, Jun 14 2014
The least number k > 0 such that 2^k ends in n consecutive decreasing digits is a 3-number sequence given by {1, 5, 25}. The consecutive decreasing digits are {2, 32, 432}. There are 100 different 3-digit endings for 2^k. There are no k-values such that 2^k ends in '987', '876', '765', '654', '543', '321', or '210'. The k-values for which 2^k ends in '432' are given by 25 mod 100. For k = 25 + 100*x, the digit immediately before the run of '432' is {4, 6, 8, 0, 2, 4, 6, 8, 0, 2, ...} for x = {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, ...}, respectively. Thus, we see the digit before '432' will never be a 5. So, this sequence is complete. - Derek Orr, Jul 03 2014
a(n) is the number of permutations of length n avoiding both 231 and 321 in the classical sense which are breadth-first search reading words of increasing unary-binary trees. For more details, see the entry for permutations avoiding 231 at A245898. - Manda Riehl, Aug 05 2014
Numbers n such that sigma(n) = sigma(2n) - phi(4n). - Farideh Firoozbakht, Aug 14 2014
This is a B_2 sequence: for i < j, differences a(j) - a(i) are all distinct. Here 2*a(n) < a(n+1) + 1, so a(n) - a(0) < a(n+1) - a(n). - Thomas Ordowski, Sep 23 2014
a(n) counts n-walks (closed) on the graph G(1-vertex; 1-loop, 1-loop). - David Neil McGrath, Dec 11 2014
a(n-1) counts walks (closed) on the graph G(1-vertex; 1-loop, 2-loop, 3-loop, 4-loop, ...). - David Neil McGrath, Jan 01 2015
b(0) = 4; b(n+1) is the smallest number not in the sequence such that b(n+1) - Prod_{i=0..n} b(i) divides b(n+1) - Sum_{i=0..n} b(i). Then b(n) = a(n) for n > 2. - Derek Orr, Jan 15 2015
a(n) counts the permutations of length n+2 whose first element is 2 such that the permutation has exactly one descent. - Ran Pan, Apr 17 2015
a(0)-a(30) appear, with a(26)-a(30) in error, in tablet M 08613 (see CDLI link) from the Old Babylonian period (c. 1900-1600 BC). - Charles R Greathouse IV, Sep 03 2015
Subsequence of A028982 (the squares or twice squares sequence). - Timothy L. Tiffin, Jul 18 2016
A000120(a(n)) = 1. A000265(a(n)) = 1. A000593(a(n)) = 1. - Juri-Stepan Gerasimov, Aug 16 2016
Number of monotone maps f : [0..n] -> [0..n] which are order-increasing (i <= f(i)) and idempotent (f(f(i)) = f(i)). In other words, monads on the n-th ordinal (seen as a posetal category). Any monad f determines a subset of [0..n] that contains n, by considering its set of monad algebras = fixed points { i | f(i) = i }. Conversely, any subset S of [0..n] containing n determines a monad on [0..n], by the function i |-> min { j | i <= j, j in S }. - Noam Zeilberger, Dec 11 2016
Consider n points lying on a circle. Then for n>=2 a(n-2) gives the number of ways to connect two adjacent points with nonintersecting chords. - Anton Zakharov, Dec 31 2016
Satisfies Benford's law [Diaconis, 1977; Berger-Hill, 2017] - N. J. A. Sloane, Feb 07 2017
Also the number of independent vertex sets and vertex covers in the n-empty graph. - Eric W. Weisstein, Sep 21 2017
Also the number of maximum cliques in the n-halved cube graph for n > 4. - Eric W. Weisstein, Dec 04 2017
Number of pairs of compositions of n corresponding to a seaweed algebra of index n-1. - Nick Mayers, Jun 25 2018
The multiplicative group of integers modulo a(n) is cyclic if and only if n = 0, 1, 2. For n >= 3, it is a product of two cyclic groups. - Jianing Song, Jun 27 2018
k^n is the determinant of n X n matrix M_(i, j) = binomial(k + i + j - 2, j) - binomial(i+j-2, j), in this case k=2. - Tony Foster III, May 12 2019
Solutions to the equation Phi(2n + 2*Phi(2n)) = 2n. - M. Farrokhi D. G., Jan 03 2020
a(n-1) is the number of subsets of {1,2,...,n} which have an element that is the size of the set. For example, for n = 4, a(3) = 8 and the subsets are {1}, {1,2}, {2,3}, {2,4}, {1,2,3}, {1,3,4}, {2,3,4}, {1,2,3,4}. - Enrique Navarrete, Nov 21 2020
a(n) is the number of self-inverse (n+1)-order permutations with 231-avoiding. E.g., a(3) = 8: [1234, 1243, 1324, 1432, 2134, 2143, 3214, 4321]. - Yuchun Ji, Feb 26 2021
For any fixed k > 0, a(n) is the number of ways to tile a strip of length n+1 with tiles of length 1, 2, ... k, where the tile of length k can be black or white, with the restriction that the first tile cannot be black. - Greg Dresden and Bora Bursalı, Aug 31 2023

Examples

			There are 2^3 = 8 subsets of a 3-element set {1,2,3}, namely { -, 1, 2, 3, 12, 13, 23, 123 }.
		

References

  • Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 1016.
  • Mohammad K. Azarian, A Generalization of the Climbing Stairs Problem, Mathematics and Computer Education Journal, Vol. 31, No. 1, pp. 24-28, Winter 1997.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See pp. 73, 84.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §4.5 Logarithms and §8.1 Terminology, pp. 150, 264.
  • Paul J. Nahin, An Imaginary Tale: The Story of sqrt(-1), Princeton University Press, Princeton, NJ. 1998, pp. 69-70.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 273.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 124.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • V. E. Tarakanov, Combinatorial problems on binary matrices, Combin. Analysis, MSU, 5 (1980), 4-15. (Russian)
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • S. Wolfram, A New Kind of Science, Wolfram Media, 2002; p. 55.

Crossrefs

This is the Hankel transform (see A001906 for the definition) of A000984, A002426, A026375, A026387, A026569, A026585, A026671 and A032351. - John W. Layman, Jul 31 2000
Euler transform of A001037, A209406 (multisets), inverse binomial transform of A000244, binomial transform of A000012.
Complement of A057716.
Boustrophedon transforms: A000734, A000752.
Range of values of A006519, A007875, A011782, A030001, A034444, A037445, A053644, and A054243.
Cf. A018900, A014311, A014312, A014313, A023688, A023689, A023690, A023691 (sum of 2, ..., 9 distinct powers of 2).
Cf. A090129.
The following are parallel families: A000079 (2^n), A004094 (2^n reversed), A028909 (2^n sorted up), A028910 (2^n sorted down), A036447 (double and reverse), A057615 (double and sort up), A263451 (double and sort down); A000244 (3^n), A004167 (3^n reversed), A321540 (3^n sorted up), A321539 (3^n sorted down), A163632 (triple and reverse), A321542 (triple and sort up), A321541 (triple and sort down).

Programs

  • Haskell
    a000079 = (2 ^)
    a000079_list = iterate (* 2) 1
    -- Reinhard Zumkeller, Jan 22 2014, Mar 05 2012, Dec 29 2011
    
  • Magma
    [2^n: n in [0..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Magma
    [n le 2 select n else 5*Self(n-1)-6*Self(n-2): n in [1..40]]; // Vincenzo Librandi, Feb 17 2014
    
  • Maple
    A000079 := n->2^n; [ seq(2^n,n=0..50) ];
    isA000079 := proc(n)
        local fs;
        fs := numtheory[factorset](n) ;
        if n = 1 then
            true ;
        elif nops(fs) <> 1 then
            false;
        elif op(1,fs) = 2 then
            true;
        else
            false ;
        end if;
    end proc: # R. J. Mathar, Jan 09 2017
  • Mathematica
    Table[2^n, {n, 0, 50}]
    2^Range[0, 50] (* Wesley Ivan Hurt, Jun 14 2014 *)
    LinearRecurrence[{2}, {2}, {0, 20}] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 2 x), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
    NestList[2# &, 1, 40] (* Harvey P. Dale, Oct 07 2019 *)
  • Maxima
    A000079(n):=2^n$ makelist(A000079(n),n,0,30); /* Martin Ettl, Nov 05 2012 */
    
  • PARI
    A000079(n)=2^n \\ Edited by M. F. Hasler, Aug 27 2014
    
  • PARI
    unimodal(n)=local(x,d,um,umc); umc=0; for (c=0,n!-1, x=numtoperm(n,c); d=0; um=1; for (j=2,n,if (x[j]x[j-1] && d==1,um=0); if (um==0,break)); if (um==1,print(x)); umc+=um); umc
    
  • Python
    def a(n): return 1<Michael S. Branicky, Jul 28 2022
    
  • Python
    def is_powerof2(n) -> bool: return n and (n & (n - 1)) == 0  # Peter Luschny, Apr 10 2025
  • Scala
    (List.fill(20)(2: BigInt)).scanLeft(1: BigInt)( * ) // Alonso del Arte, Jan 16 2020
    
  • Scheme
    (define (A000079 n) (expt 2 n)) ;; Antti Karttunen, Mar 21 2017
    

Formula

a(n) = 2^n.
a(0) = 1; a(n) = 2*a(n-1).
G.f.: 1/(1 - 2*x).
E.g.f.: exp(2*x).
a(n)= Sum_{k = 0..n} binomial(n, k).
a(n) is the number of occurrences of n in A000523. a(n) = A001045(n) + A001045(n+1). a(n) = 1 + Sum_{k = 0..(n - 1)} a(k). The Hankel transform of this sequence gives A000007 = [1, 0, 0, 0, 0, 0, ...]. - Philippe Deléham, Feb 25 2004
n such that phi(n) = n/2, for n > 1, where phi is Euler's totient (A000010). - Lekraj Beedassy, Sep 07 2004
a(n + 1) = a(n) XOR 3*a(n) where XOR is the binary exclusive OR operator. - Philippe Deléham, Jun 19 2005
a(n) = StirlingS2(n + 1, 2) + 1. - Ross La Haye, Jan 09 2008
a(n+2) = 6a(n+1) - 8a(n), n = 1, 2, 3, ... with a(1) = 1, a(2) = 2. - Yosu Yurramendi, Aug 06 2008
a(n) = ka(n-1) + (4 - 2k)a(n-2) for any integer k and n > 1, with a(0) = 1, a(1) = 2. - Jaume Oliver Lafont, Dec 05 2008
a(n) = Sum_{l_1 = 0..n + 1} Sum_{l_2 = 0..n}...Sum_{l_i = 0..n - i}...Sum_{l_n = 0..1} delta(l_1, l_2, ..., l_i, ..., l_n) where delta(l_1, l_2, ..., l_i, ..., l_n) = 0 if any l_i <= l_(i+1) and l_(i+1) != 0 and delta(l_1, l_2, ..., l_i, ..., l_n) = 1 otherwise. - Thomas Wieder, Feb 25 2009
a(0) = 1, a(1) = 2; a(n) = a(n-1)^2/a(n-2), n >= 2. - Jaume Oliver Lafont, Sep 22 2009
a(n) = A173786(n, n)/2 = A173787(n + 1, n). - Reinhard Zumkeller, Feb 28 2010
If p[i] = i - 1 and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 1, a(n-1) = det A. - Milan Janjic, May 02 2010
If p[i] = Fibonacci(i-2) and if A is the Hessenberg matrix of order n defined by: A[i, j] = p[j - i + 1], (i <= j), A[i, j] = -1, (i = j + 1), and A[i, j] = 0 otherwise. Then, for n >= 2, a(n-2) = det A. - Milan Janjic, May 08 2010
The sum of reciprocals, 1/1 + 1/2 + 1/4 + 1/8 + ... + 1/(2^n) + ... = 2. - Mohammad K. Azarian, Dec 29 2010
a(n) = 2*A001045(n) + A078008(n) = 3*A001045(n) + (-1)^n. - Paul Barry, Feb 20 2003
a(n) = A118654(n, 2).
a(n) = A140740(n+1, 1).
a(n) = A131577(n) + A011782(n) = A024495(n) + A131708(n) + A024493(n) = A000749(n) + A038503(n) + A038504(n) + A038505(n) = A139761(n) + A139748(n) + A139714(n) + A133476(n) + A139398(n). - Paul Curtz, Jul 25 2011
a(n) = row sums of A007318. - Susanne Wienand, Oct 21 2011
a(n) = Hypergeometric([-n], [], -1). - Peter Luschny, Nov 01 2011
G.f.: A(x) = B(x)/x, B(x) satisfies B(B(x)) = x/(1 - x)^2. - Vladimir Kruchinin, Nov 10 2011
a(n) = Sum_{k = 0..n} A201730(n, k)*(-1)^k. - Philippe Deléham, Dec 06 2011
2^n = Sum_{k = 1..floor((n+1)/2)} C(n+1, 2k-1). - Dennis P. Walsh, Dec 15 2011
A209229(a(n)) = 1. - Reinhard Zumkeller, Mar 07 2012
A001227(a(n)) = 1. - Reinhard Zumkeller, May 01 2012
Sum_{n >= 1} mobius(n)/a(n) = 0.1020113348178103647430363939318... - R. J. Mathar, Aug 12 2012
E.g.f.: 1 + 2*x/(U(0) - x) where U(k) = 6*k + 1 + x^2/(6*k+3 + x^2/(6*k + 5 + x^2/U(k+1) )); (continued fraction, 3-step). - Sergei N. Gladkovskii, Dec 04 2012
a(n) = det(|s(i+2,j)|, 1 <= i,j <= n), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 04 2013
a(n) = det(|ps(i+1,j)|, 1 <= i,j <= n), where ps(n,k) are Legendre-Stirling numbers of the first kind (A129467). - Mircea Merca, Apr 06 2013
G.f.: W(0), where W(k) = 1 + 2*x*(k+1)/(1 - 2*x*(k+1)/( 2*x*(k+2) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 28 2013
a(n-1) = Sum_{t_1 + 2*t_2 + ... + n*t_n = n} multinomial(t_1 + t_2 + ... + t_n; t_1, t_2, ..., t_n). - Mircea Merca, Dec 06 2013
Construct the power matrix T(n,j) = [A^*j]*[S^*(j-1)] where A(n)=(1,1,1,...) and S(n)=(0,1,0,0,...) (where * is convolution operation). Then a(n-1) = Sum_{j=1..n} T(n,j). - David Neil McGrath, Jan 01 2015
a(n) = A000005(A002110(n)). - Ivan N. Ianakiev, May 23 2016
From Ilya Gutkovskiy, Jul 18 2016: (Start)
Exponential convolution of A000012 with themselves.
a(n) = Sum_{k=0..n} A011782(k).
Sum_{n>=0} a(n)/n! = exp(2) = A072334.
Sum_{n>=0} (-1)^n*a(n)/n! = exp(-2) = A092553. (End)
G.f.: (r(x) * r(x^2) * r(x^4) * r(x^8) * ...) where r(x) = A090129(x) = (1 + 2x + 2x^2 + 4x^3 + 8x^4 + ...). - Gary W. Adamson, Sep 13 2016
a(n) = A000045(n + 1) + A000045(n) + Sum_{k = 0..n - 2} A000045(k + 1)*2^(n - 2 - k). - Melvin Peralta, Dec 22 2017
a(n) = 7*A077020(n)^2 + A077021(n)^2, n>=3. - Ralf Steiner, Aug 08 2021
a(n)= n + 1 + Sum_{k=3..n+1} (2*k-5)*J(n+2-k), where Jacobsthal number J(n) = A001045(n). - Michael A. Allen, Jan 12 2022
Integral_{x=0..Pi} cos(x)^n*cos(n*x) dx = Pi/a(n) (see Nahin, pp. 69-70). - Stefano Spezia, May 17 2023

Extensions

Clarified a comment T. D. Noe, Aug 30 2009
Edited by Daniel Forgues, May 12 2010
Incorrect comment deleted by Matthew Vandermast, May 17 2014
Comment corrected to match offset by Geoffrey Critzer, Nov 28 2014

A000225 a(n) = 2^n - 1. (Sometimes called Mersenne numbers, although that name is usually reserved for A001348.)

Original entry on oeis.org

0, 1, 3, 7, 15, 31, 63, 127, 255, 511, 1023, 2047, 4095, 8191, 16383, 32767, 65535, 131071, 262143, 524287, 1048575, 2097151, 4194303, 8388607, 16777215, 33554431, 67108863, 134217727, 268435455, 536870911, 1073741823, 2147483647, 4294967295, 8589934591
Offset: 0

Views

Author

Keywords

Comments

This is the Gaussian binomial coefficient [n,1] for q=2.
Number of rank-1 matroids over S_n.
Numbers k such that the k-th central binomial coefficient is odd: A001405(k) mod 2 = 1. - Labos Elemer, Mar 12 2003
This gives the (zero-based) positions of odd terms in the following convolution sequences: A000108, A007460, A007461, A007463, A007464, A061922.
Also solutions (with minimum number of moves) for the problem of Benares Temple, i.e., three diamond needles with n discs ordered by decreasing size on the first needle to place in the same order on the third one, without ever moving more than one disc at a time and without ever placing one disc at the top of a smaller one. - Xavier Acloque, Oct 18 2003
a(0) = 0, a(1) = 1; a(n) = smallest number such that a(n)-a(m) == 0 (mod (n-m+1)), for all m. - Amarnath Murthy, Oct 23 2003
Binomial transform of [1, 1/2, 1/3, ...] = [1/1, 3/2, 7/3, ...]; (2^n - 1)/n, n=1,2,3, ... - Gary W. Adamson, Apr 28 2005
Numbers whose binary representation is 111...1. E.g., the 7th term is (2^7) - 1 = 127 = 1111111 (in base 2). - Alexandre Wajnberg, Jun 08 2005
Number of nonempty subsets of a set with n elements. - Michael Somos, Sep 03 2006
For n >= 2, a(n) is the least Fibonacci n-step number that is not a power of 2. - Rick L. Shepherd, Nov 19 2007
Let P(A) be the power set of an n-element set A. Then a(n+1) = the number of pairs of elements {x,y} of P(A) for which x and y are disjoint and for which either x is a subset of y or y is a subset of x. - Ross La Haye, Jan 10 2008
A simpler way to state this is that it is the number of pairs (x,y) where at least one of x and y is the empty set. - Franklin T. Adams-Watters, Oct 28 2011
2^n-1 is the sum of the elements in a Pascal triangle of depth n. - Brian Lewis (bsl04(AT)uark.edu), Feb 26 2008
Sequence generalized: a(n) = (A^n -1)/(A-1), n >= 1, A integer >= 2. This sequence has A=2; A003462 has A=3; A002450 has A=4; A003463 has A=5; A003464 has A=6; A023000 has A=7; A023001 has A=8; A002452 has A=9; A002275 has A=10; A016123 has A=11; A016125 has A=12; A091030 has A=13; A135519 has A=14; A135518 has A=15; A131865 has A=16; A091045 has A=17; A064108 has A=20. - Ctibor O. Zizka, Mar 03 2008
a(n) is also a Mersenne prime A000668 when n is a prime number in A000043. - Omar E. Pol, Aug 31 2008
a(n) is also a Mersenne number A001348 when n is prime. - Omar E. Pol, Sep 05 2008
With offset 1, = row sums of triangle A144081; and INVERT transform of A009545 starting with offset 1; where A009545 = expansion of sin(x)*exp(x). - Gary W. Adamson, Sep 10 2008
Numbers n such that A000120(n)/A070939(n) = 1. - Ctibor O. Zizka, Oct 15 2008
For n > 0, sequence is equal to partial sums of A000079; a(n) = A000203(A000079(n-1)). - Lekraj Beedassy, May 02 2009
Starting with offset 1 = the Jacobsthal sequence, A001045, (1, 1, 3, 5, 11, 21, ...) convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 23 2009
Numbers n such that n=2*phi(n+1)-1. - Farideh Firoozbakht, Jul 23 2009
a(n) = (a(n-1)+1)-th odd numbers = A005408(a(n-1)) for n >= 1. - Jaroslav Krizek, Sep 11 2009
Partial sums of a(n) for n >= 0 are A000295(n+1). Partial sums of a(n) for n >= 1 are A000295(n+1) and A130103(n+1). a(n) = A006127(n) - (n+1). - Jaroslav Krizek, Oct 16 2009
If n is even a(n) mod 3 = 0. This follows from the congruences 2^(2k) - 1 ~ 2*2*...*2 - 1 ~ 4*4*...*4 - 1 ~ 1*1*...*1 - 1 ~ 0 (mod 3). (Note that 2*2*...*2 has an even number of terms.) - Washington Bomfim, Oct 31 2009
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 1, a(n)=det(A). - Milan Janjic, Jan 26 2010
This is the sequence A(0,1;1,2;2) = A(0,1;3,-2;0) of the family of sequences [a,b:c,d:k] considered by G. Detlefs, and treated as A(a,b;c,d;k) in the W. Lang link given below. - Wolfdieter Lang, Oct 18 2010
a(n) = S(n+1,2), a Stirling number of the second kind. See the example below. - Dennis P. Walsh, Mar 29 2011
Entries of row a(n) in Pascal's triangle are all odd, while entries of row a(n)-1 have alternating parities of the form odd, even, odd, even, ..., odd.
Define the bar operation as an operation on signed permutations that flips the sign of each entry. Then a(n+1) is the number of signed permutations of length 2n that are equal to the bar of their reverse-complements and avoid the set of patterns {(-2,-1), (-1,+2), (+2,+1)}. (See the Hardt and Troyka reference.) - Justin M. Troyka, Aug 13 2011
A159780(a(n)) = n and A159780(m) < n for m < a(n). - Reinhard Zumkeller, Oct 21 2011
This sequence is also the number of proper subsets of a set with n elements. - Mohammad K. Azarian, Oct 27 2011
a(n) is the number k such that the number of iterations of the map k -> (3k +1)/2 == 1 (mod 2) until reaching (3k +1)/2 == 0 (mod 2) equals n. (see the Collatz problem). - Michel Lagneau, Jan 18 2012
For integers a, b, denote by a<+>b the least c >= a such that Hd(a,c) = b (note that, generally speaking, a<+>b differs from b<+>a). Then a(n+1)=a(n)<+>1. Thus this sequence is the Hamming analog of nonnegative integers. - Vladimir Shevelev, Feb 13 2012
Pisano period lengths: 1, 1, 2, 1, 4, 2, 3, 1, 6, 4, 10, 2, 12, 3, 4, 1, 8, 6, 18, 4, ... apparently A007733. - R. J. Mathar, Aug 10 2012
Start with n. Each n generates a sublist {n-1,n-2,...,1}. Each element of each sublist also generates a sublist. Take the sum of all. E.g., 3->{2,1} and 2->{1}, so a(3)=3+2+1+1=7. - Jon Perry, Sep 02 2012
This is the Lucas U(P=3,Q=2) sequence. - R. J. Mathar, Oct 24 2012
The Mersenne numbers >= 7 are all Brazilian numbers, as repunits in base two. See Proposition 1 & 5.2 in Links: "Les nombres brésiliens". - Bernard Schott, Dec 26 2012
Number of line segments after n-th stage in the H tree. - Omar E. Pol, Feb 16 2013
Row sums of triangle in A162741. - Reinhard Zumkeller, Jul 16 2013
a(n) is the highest power of 2 such that 2^a(n) divides (2^n)!. - Ivan N. Ianakiev, Aug 17 2013
In computer programming, these are the only unsigned numbers such that k&(k+1)=0, where & is the bitwise AND operator and numbers are expressed in binary. - Stanislav Sykora, Nov 29 2013
Minimal number of moves needed to interchange n frogs in the frogs problem (see for example the NRICH 1246 link or the Britton link below). - N. J. A. Sloane, Jan 04 2014
a(n) !== 4 (mod 5); a(n) !== 10 (mod 11); a(n) !== 2, 4, 5, 6 (mod 7). - Carmine Suriano, Apr 06 2014
After 0, antidiagonal sums of the array formed by partial sums of integers (1, 2, 3, 4, ...). - Luciano Ancora, Apr 24 2015
a(n+1) equals the number of ternary words of length n avoiding 01,02. - Milan Janjic, Dec 16 2015
With offset 0 and another initial 0, the n-th term of 0, 0, 1, 3, 7, 15, ... is the number of commas required in the fully-expanded von Neumann definition of the ordinal number n. For example, 4 := {0, 1, 2, 3} := {{}, {{}}, {{}, {{}}}, {{}, {{}}, {{}, {{}}}}}, which uses seven commas. Also, for n>0, a(n) is the total number of symbols required in the fully-expanded von Neumann definition of ordinal n - 1, where a single symbol (as usual) is always used to represent the empty set and spaces are ignored. E.g., a(5) = 31, the total such symbols for the ordinal 4. - Rick L. Shepherd, May 07 2016
With the quantum integers defined by [n+1]A001045%20are%20given%20by%20q%20=%20i%20*%20sqrt(2)%20for%20i%5E2%20=%20-1.%20Cf.%20A239473.%20-%20_Tom%20Copeland">q = (q^(n+1) - q^(-n-1)) / (q - q^(-1)), the Mersenne numbers are a(n+1) = q^n [n+1]_q with q = sqrt(2), whereas the signed Jacobsthal numbers A001045 are given by q = i * sqrt(2) for i^2 = -1. Cf. A239473. - _Tom Copeland, Sep 05 2016
For n>1: numbers n such that n - 1 divides sigma(n + 1). - Juri-Stepan Gerasimov, Oct 08 2016
This is also the second column of the Stirling2 triangle A008277 (see also A048993). - Wolfdieter Lang, Feb 21 2017
Except for the initial terms, the decimal representation of the x-axis of the n-th stage of growth of the two-dimensional cellular automaton defined by "Rule 659", "Rule 721" and "Rule 734", based on the 5-celled von Neumann neighborhood initialized with a single on cell. - Robert Price, Mar 14 2017
a(n), n > 1, is the number of maximal subsemigroups of the monoid of order-preserving partial injective mappings on a set with n elements. - James Mitchell and Wilf A. Wilson, Jul 21 2017
Also the number of independent vertex sets and vertex covers in the complete bipartite graph K_{n-1,n-1}. - Eric W. Weisstein, Sep 21 2017
Sum_{k=0..n} p^k is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*p + binomial(i+j-1, i), in this case p=2 (empirical observation). - Tony Foster III, May 11 2019
The rational numbers r(n) = a(n+1)/2^(n+1) = a(n+1)/A000079(n+1) appear also as root of the n-th iteration f^{[n]}(c; x) = 2^(n+1)*x - a(n+1)*c of f(c; x) = f^{[0]}(c; x) = 2*x - c as r(n)*c. This entry is motivated by a riddle of Johann Peter Hebel (1760 - 1826): Erstes Rechnungsexempel(Ein merkwürdiges Rechnungs-Exempel) from 1803, with c = 24 and n = 2, leading to the root r(2)*24 = 21 as solution. See the link and reference. For the second problem, also involving the present sequence, see a comment in A130330. - Wolfdieter Lang, Oct 28 2019
a(n) is the sum of the smallest elements of all subsets of {1,2,..,n} that contain n. For example, a(3)=7; the subsets of {1,2,3} that contain 3 are {3}, {1,3}, {2,3}, {1,2,3}, and the sum of smallest elements is 7. - Enrique Navarrete, Aug 21 2020
a(n-1) is the number of nonempty subsets of {1,2,..,n} which don't have an element that is the size of the set. For example, for n = 4, a(3) = 7 and the subsets are {2}, {3}, {4}, {1,3}, {1,4}, {3,4}, {1,2,4}. - Enrique Navarrete, Nov 21 2020
From Eric W. Weisstein, Sep 04 2021: (Start)
Also the number of dominating sets in the complete graph K_n.
Also the number of minimum dominating sets in the n-helm graph for n >= 3. (End)
Conjecture: except for a(2)=3, numbers m such that 2^(m+1) - 2^j - 2^k - 1 is composite for all 0 <= j < k <= m. - Chai Wah Wu, Sep 08 2021
a(n) is the number of three-in-a-rows passing through a corner cell in n-dimensional tic-tac-toe. - Ben Orlin, Mar 15 2022
From Vladimir Pletser, Jan 27 2023: (Start)
a(n) == 1 (mod 30) for n == 1 (mod 4);
a(n) == 7 (mod 120) for n == 3 (mod 4);
(a(n) - 1)/30 = (a(n+2) - 7)/120 for n odd;
(a(n) - 1)/30 = (a(n+2) - 7)/120 = A131865(m) for n == 1 (mod 4) and m >= 0 with A131865(0) = 0. (End)
a(n) is the number of n-digit numbers whose smallest decimal digit is 8. - Stefano Spezia, Nov 15 2023
Also, number of nodes in a perfect binary tree of height n-1, or: number of squares (or triangles) after the n-th step of the construction of a Pythagorean tree: Start with a segment. At each step, construct squares having the most recent segment(s) as base, and isosceles right triangles having the opposite side of the squares as hypotenuse ("on top" of each square). The legs of these triangles will serve as the segments which are the bases of the squares in the next step. - M. F. Hasler, Mar 11 2024
a(n) is the length of the longest path in the n-dimensional hypercube. - Christian Barrientos, Apr 13 2024
a(n) is the diameter of the n-Hanoi graph. Equivalently, a(n) is the largest minimum number of moves between any two states of the Towers of Hanoi problem (aka problem of Benares Temple described above). - Allan Bickle, Aug 09 2024

Examples

			For n=3, a(3)=S(4,2)=7, a Stirling number of the second kind, since there are 7 ways to partition {a,b,c,d} into 2 nonempty subsets, namely,
  {a}U{b,c,d}, {b}U{a,c,d}, {c}U{a,b,d}, {d}U{a,b,c}, {a,b}U{c,d}, {a,c}U{b,d}, and {a,d}U{b,c}. - _Dennis P. Walsh_, Mar 29 2011
From _Justin M. Troyka_, Aug 13 2011: (Start)
Since a(3) = 7, there are 7 signed permutations of 4 that are equal to the bar of their reverse-complements and avoid {(-2,-1), (-1,+2), (+2,+1)}. These are:
  (+1,+2,-3,-4),
  (+1,+3,-2,-4),
  (+1,-3,+2,-4),
  (+2,+4,-1,-3),
  (+3,+4,-1,-2),
  (-3,+1,-4,+2),
  (-3,-4,+1,+2). (End)
G.f. = x + 3*x^2 + 7*x^3 + 15*x^4 + 31*x^5 + 63*x^6 + 127*x^7 + ...
For the Towers of Hanoi problem with 2 disks, the moves are as follows, so a(2) = 3.
12|_|_ -> 2|1|_ -> _|1|2 -> _|_|12  - _Allan Bickle_, Aug 07 2024
		

References

  • P. Bachmann, Niedere Zahlentheorie (1902, 1910), reprinted Chelsea, NY, 1968, vol. 2, p. 75.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134.
  • Jan Gullberg, Mathematics from the Birth of Numbers, W. W. Norton & Co., NY & London, 1997, §3.2 Prime Numbers, p. 79.
  • Johann Peter Hebel, Gesammelte Werke in sechs Bänden, Herausgeber: Jan Knopf, Franz Littmann und Hansgeorg Schmidt-Bergmann unter Mitarbeit von Ester Stern, Wallstein Verlag, 2019. Band 3, S. 20-21, Loesung, S. 36-37. See also the link below.
  • Paulo Ribenboim, The Little Book of Bigger Primes, Springer-Verlag NY 2004. See pp. 46, 60, 75-83.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 141.
  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, "Tower of Hanoi", Penguin Books, 1987, pp. 112-113.

Crossrefs

Cf. A000043 (Mersenne exponents).
Cf. A000668 (Mersenne primes).
Cf. A001348 (Mersenne numbers with n prime).
Cf. a(n)=A112492(n, 2). Rightmost column of A008969.
a(n) = A118654(n, 1) = A118654(n-1, 3), for n > 0.
Subsequence of A132781.
Smallest number whose base b sum of digits is n: this sequence (b=2), A062318 (b=3), A180516 (b=4), A181287 (b=5), A181288 (b=6), A181303 (b=7), A165804 (b=8), A140576 (b=9), A051885 (b=10).
Cf. A008277, A048993 (columns k=2), A000918, A130330.
Cf. A000225, A029858, A058809, A375256 (Hanoi graphs).

Programs

  • Haskell
    a000225 = (subtract 1) . (2 ^)
    a000225_list = iterate ((+ 1) . (* 2)) 0
    -- Reinhard Zumkeller, Mar 20 2012
    
  • Maple
    A000225 := n->2^n-1; [ seq(2^n-1,n=0..50) ];
    A000225:=1/(2*z-1)/(z-1); # Simon Plouffe in his 1992 dissertation, sequence starting at a(1)
  • Mathematica
    a[n_] := 2^n - 1; Table[a[n], {n, 0, 30}] (* Stefan Steinerberger, Mar 30 2006 *)
    Array[2^# - 1 &, 50, 0] (* Joseph Biberstine (jrbibers(AT)indiana.edu), Dec 26 2006 *)
    NestList[2 # + 1 &, 0, 32] (* Robert G. Wilson v, Feb 28 2011 *)
    2^Range[0, 20] - 1 (* Eric W. Weisstein, Jul 17 2017 *)
    LinearRecurrence[{3, -2}, {1, 3}, 20] (* Eric W. Weisstein, Sep 21 2017 *)
    CoefficientList[Series[1/(1 - 3 x + 2 x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Sep 21 2017 *)
  • PARI
    A000225(n) = 2^n-1  \\ Michael B. Porter, Oct 27 2009
    
  • PARI
    concat(0, Vec(x/((1-2*x)*(1-x)) + O(x^100))) \\ Altug Alkan, Oct 28 2015
    
  • Python
    def A000225(n): return (1<Chai Wah Wu, Jul 06 2022
  • SageMath
    def isMersenne(n): return n == sum([(1 - b) << s for (s, b) in enumerate((n+1).bits())]) # Peter Luschny, Sep 01 2019
    

Formula

G.f.: x/((1-2*x)*(1-x)).
E.g.f.: exp(2*x) - exp(x).
E.g.f. if offset 1: ((exp(x)-1)^2)/2.
a(n) = Sum_{k=0..n-1} 2^k. - Paul Barry, May 26 2003
a(n) = a(n-1) + 2*a(n-2) + 2, a(0)=0, a(1)=1. - Paul Barry, Jun 06 2003
Let b(n) = (-1)^(n-1)*a(n). Then b(n) = Sum_{i=1..n} i!*i*Stirling2(n,i)*(-1)^(i-1). E.g.f. of b(n): (exp(x)-1)/exp(2x). - Mario Catalani (mario.catalani(AT)unito.it), Dec 19 2003
a(n+1) = 2*a(n) + 1, a(0) = 0.
a(n) = Sum_{k=1..n} binomial(n, k).
a(n) = n + Sum_{i=0..n-1} a(i); a(0) = 0. - Rick L. Shepherd, Aug 04 2004
a(n+1) = (n+1)*Sum_{k=0..n} binomial(n, k)/(k+1). - Paul Barry, Aug 06 2004
a(n+1) = Sum_{k=0..n} binomial(n+1, k+1). - Paul Barry, Aug 23 2004
Inverse binomial transform of A001047. Also U sequence of Lucas sequence L(3, 2). - Ross La Haye, Feb 07 2005
a(n) = A099393(n-1) - A020522(n-1) for n > 0. - Reinhard Zumkeller, Feb 07 2006
a(n) = A119258(n,n-1) for n > 0. - Reinhard Zumkeller, May 11 2006
a(n) = 3*a(n-1) - 2*a(n-2); a(0)=0, a(1)=1. - Lekraj Beedassy, Jun 07 2006
Sum_{n>0} 1/a(n) = 1.606695152... = A065442, see A038631. - Philippe Deléham, Jun 27 2006
Stirling_2(n-k,2) starting from n=k+1. - Artur Jasinski, Nov 18 2006
a(n) = A125118(n,1) for n > 0. - Reinhard Zumkeller, Nov 21 2006
a(n) = StirlingS2(n+1,2). - Ross La Haye, Jan 10 2008
a(n) = A024036(n)/A000051(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A024088(n)/A001576(n). -Reinhard Zumkeller, Feb 15 2009
a(2*n) = a(n)*A000051(n); a(n) = A173787(n,0). - Reinhard Zumkeller, Feb 28 2010
For n > 0: A179857(a(n)) = A024036(n) and A179857(m) < A024036(n) for m < a(n). - Reinhard Zumkeller, Jul 31 2010
From Enrique Pérez Herrero, Aug 21 2010: (Start)
a(n) = J_n(2), where J_n is the n-th Jordan Totient function: (A007434, is J_2).
a(n) = Sum_{d|2} d^n*mu(2/d). (End)
A036987(a(n)) = 1. - Reinhard Zumkeller, Mar 06 2012
a(n+1) = A044432(n) + A182028(n). - Reinhard Zumkeller, Apr 07 2012
a(n) = A007283(n)/3 - 1. - Martin Ettl, Nov 11 2012
a(n+1) = A001317(n) + A219843(n); A219843(a(n)) = 0. - Reinhard Zumkeller, Nov 30 2012
a(n) = det(|s(i+2,j+1)|, 1 <= i,j <= n-1), where s(n,k) are Stirling numbers of the first kind. - Mircea Merca, Apr 06 2013
G.f.: Q(0), where Q(k) = 1 - 1/(4^k - 2*x*16^k/(2*x*4^k - 1/(1 - 1/(2*4^k - 8*x*16^k/(4*x*4^k - 1/Q(k+1)))))); (continued fraction). - Sergei N. Gladkovskii, May 22 2013
E.g.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - (k+1)/Q(k+1))); (continued fraction).
G.f.: Q(0), where Q(k) = 1 - 1/(2^k - 2*x*4^k/(2*x*2^k - 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 23 2013
a(n) = A000203(2^(n-1)), n >= 1. - Ivan N. Ianakiev, Aug 17 2013
a(n) = Sum_{t_1+2*t_2+...+n*t_n=n} n*multinomial(t_1+t_2 +...+t_n,t_1,t_2,...,t_n)/(t_1+t_2 +...+t_n). - Mircea Merca, Dec 06 2013
a(0) = 0; a(n) = a(n-1) + 2^(n-1) for n >= 1. - Fred Daniel Kline, Feb 09 2014
a(n) = A125128(n) - A000325(n) + 1. - Miquel Cerda, Aug 07 2016
From Ilya Gutkovskiy, Aug 07 2016: (Start)
Binomial transform of A057427.
Sum_{n>=0} a(n)/n! = A090142. (End)
a(n) = A000918(n) + 1. - Miquel Cerda, Aug 09 2016
a(n+1) = (A095151(n+1) - A125128(n))/2. - Miquel Cerda, Aug 12 2016
a(n) = (A079583(n) - A000325(n+1))/2. - Miquel Cerda, Aug 15 2016
Convolution of binomial coefficient C(n,a(k)) with itself is C(n,a(k+1)) for all k >= 3. - Anton Zakharov, Sep 05 2016
a(n) = (A083706(n-1) + A000325(n))/2. - Miquel Cerda, Sep 30 2016
a(n) = A005803(n) + A005408(n-1). - Miquel Cerda, Nov 25 2016
a(n) = A279396(n+2,2). - Wolfdieter Lang, Jan 10 2017
a(n) = n + Sum_{j=1..n-1} (n-j)*2^(j-1). See a Jun 14 2017 formula for A000918(n+1) with an interpretation. - Wolfdieter Lang, Jun 14 2017
a(n) = Sum_{k=0..n-1} Sum_{i=0..n-1} C(k,i). - Wesley Ivan Hurt, Sep 21 2017
a(n+m) = a(n)*a(m) + a(n) + a(m). - Yuchun Ji, Jul 27 2018
a(n+m) = a(n+1)*a(m) - 2*a(n)*a(m-1). - Taras Goy, Dec 23 2018
a(n+1) is the determinant of n X n matrix M_(i, j) = binomial(i + j - 1, j)*2 + binomial(i+j-1, i) (empirical observation). - Tony Foster III, May 11 2019
From Peter Bala, Jun 27 2025: (Start)
For n >= 1, a(3*n)/a(n) = A001576(n), a(4*n)/a(n) = A034496(n), a(5*n)/a(n) = A020514(n) a(6*n)/a(n) = A034665(n), a(7*n)/a(n) = A020516(n) and a(8*n)/a(n) = A034674(n).
exp( Sum_{n >= 1} a(2*n)/a(n)*x^n/n ) = Sum_{n >= 0} a(n+1)*x^n.
Modulo differences in offsets, exp( Sum_{n >= 1} a(k*n)/a(n)*x^n/n ) is the o.g.f. of A006095 (k = 3), A006096 (k = 4), A006097 (k = 5), A006110 (k = 6), A022189 (k = 7), A022190 (k = 8), A022191 (k = 9) and A022192 (k = 10).
The following are all examples of telescoping series:
Sum_{n >= 1} 2^n/(a(n)*a(n+1)) = 1; Sum_{n >= 1} 2^n/(a(n)*a(n+1)*a(n+2)) = 1/9.
In general, for k >= 1, Sum_{n >= 1} 2^n/(a(n)*a(n+1)*...*a(n+k)) = 1/(a(1)*a(2)*...*a(k)*a(k)).
Sum_{n >= 1} 2^n/(a(n)*a(n+2)) = 4/9, since 2^n/(a(n)*a(n+2)) = b(n) - b(n+1), where b(n) = (2/3)*(3*2^(n-1) - 1)/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+2)) = -2/9, since (-2)^n/(a(n)*a(n+2)) = c(n) - c(n+1), where c(n) = (1/3)*(-2)^n/((2^(n+1) - 1)*(2^n - 1)).
Sum_{n >= 1} 2^n/(a(n)*a(n+4)) = 18/175, since 2^n/(a(n)*a(n+4)) = d(n) - d(n+1), where d(n) = (120*8^n - 140*4^n + 45*2^n - 4)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)).
Sum_{n >= 1} (-2)^n/(a(n)*a(n+4)) = -26/525, since (-2)^n/(a(n)*a(n+4)) = e(n) - e(n+1), where e(n) = (-1)^n*(40*8^n - 24*4^n + 5*2^n)/(15*(2^n - 1)*(2^(n+1) - 1)*(2^(n+2) - 1)*(2^(n+3) - 1)). (End)

Extensions

Name partially edited by Eric W. Weisstein, Sep 04 2021

A007283 a(n) = 3*2^n.

Original entry on oeis.org

3, 6, 12, 24, 48, 96, 192, 384, 768, 1536, 3072, 6144, 12288, 24576, 49152, 98304, 196608, 393216, 786432, 1572864, 3145728, 6291456, 12582912, 25165824, 50331648, 100663296, 201326592, 402653184, 805306368, 1610612736, 3221225472, 6442450944, 12884901888
Offset: 0

Views

Author

Keywords

Comments

Same as Pisot sequences E(3, 6), L(3, 6), P(3, 6), T(3, 6). See A008776 for definitions of Pisot sequences.
Numbers k such that A006530(A000010(k)) = A000010(A006530(k)) = 2. - Labos Elemer, May 07 2002
Also least number m such that 2^n is the smallest proper divisor of m which is also a suffix of m in binary representation, see A080940. - Reinhard Zumkeller, Feb 25 2003
Length of the period of the sequence Fibonacci(k) (mod 2^(n+1)). - Benoit Cloitre, Mar 12 2003
The sequence of first differences is this sequence itself. - Alexandre Wajnberg and Eric Angelini, Sep 07 2005
Subsequence of A122132. - Reinhard Zumkeller, Aug 21 2006
Apart from the first term, a subsequence of A124509. - Reinhard Zumkeller, Nov 04 2006
Total number of Latin n-dimensional hypercubes (Latin polyhedra) of order 3. - Kenji Ohkuma (k-ookuma(AT)ipa.go.jp), Jan 10 2007
Number of different ternary hypercubes of dimension n. - Edwin Soedarmadji (edwin(AT)systems.caltech.edu), Dec 10 2005
For n >= 1, a(n) is equal to the number of functions f:{1, 2, ..., n + 1} -> {1, 2, 3} such that for fixed, different x_1, x_2,...,x_n in {1, 2, ..., n + 1} and fixed y_1, y_2,...,y_n in {1, 2, 3} we have f(x_i) <> y_i, (i = 1,2,...,n). - Milan Janjic, May 10 2007
a(n) written in base 2: 11, 110, 11000, 110000, ..., i.e.: 2 times 1, n times 0 (see A003953). - Jaroslav Krizek, Aug 17 2009
Subsequence of A051916. - Reinhard Zumkeller, Mar 20 2010
Numbers containing the number 3 in their Collatz trajectories. - Reinhard Zumkeller, Feb 20 2012
a(n-1) gives the number of ternary numbers with n digits with no two adjacent digits in common; e.g., for n=3 we have 010, 012, 020, 021, 101, 102, 120, 121, 201, 202, 210 and 212. - Jon Perry, Oct 10 2012
If n > 1, then a(n) is a solution for the equation sigma(x) + phi(x) = 3x-4. This equation also has solutions 84, 3348, 1450092, ... which are not of the form 3*2^n. - Farideh Firoozbakht, Nov 30 2013
a(n) is the upper bound for the "X-ray number" of any convex body in E^(n + 2), conjectured by Bezdek and Zamfirescu, and proved in the plane E^2 (see the paper by Bezdek and Zamfirescu). - L. Edson Jeffery, Jan 11 2014
If T is a topology on a set V of size n and T is not the discrete topology, then T has at most 3 * 2^(n-2) many open sets. See Brown and Stephen references. - Ross La Haye, Jan 19 2014
Comment from Charles Fefferman, courtesy of Doron Zeilberger, Dec 02 2014: (Start)
Fix a dimension n. For a real-valued function f defined on a finite set E in R^n, let Norm(f, E) denote the inf of the C^2 norms of all functions F on R^n that agree with f on E. Then there exist constants k and C depending only on the dimension n such that Norm(f, E) <= C*max{ Norm(f, S) }, where the max is taken over all k-point subsets S in E. Moreover, the best possible k is 3 * 2^(n-1).
The analogous result, with the same k, holds when the C^2 norm is replaced, e.g., by the C^1, alpha norm (0 < alpha <= 1). However, the optimal analogous k, e.g., for the C^3 norm is unknown.
For the above results, see Y. Brudnyi and P. Shvartsman (1994). (End)
Also, coordination sequence for (infinity, infinity, infinity) tiling of hyperbolic plane. - N. J. A. Sloane, Dec 29 2015
The average of consecutive powers of 2 beginning with 2^1. - Melvin Peralta and Miriam Ong Ante, May 14 2016
For n > 1, a(n) is the smallest Zumkeller number with n divisors that are also Zumkeller numbers (A083207). - Ivan N. Ianakiev, Dec 09 2016
Also, for n >= 2, the number of length-n strings over the alphabet {0,1,2,3} having only the single letters as nonempty palindromic subwords. (Corollary 21 in Fleischer and Shallit) - Jeffrey Shallit, Dec 02 2019
Also, a(n) is the minimum link-length of any covering trail, circuit, path, and cycle for the set of the 2^(n+2) vertices of an (n+2)-dimensional hypercube. - Marco Ripà, Aug 22 2022
The known fixed points of maps n -> A163511(n) and n -> A243071(n). [See comments in A163511]. - Antti Karttunen, Sep 06 2023
The finite subsequence a(3), a(4), a(5), a(6) = 24, 48, 96, 192 is one of only two geometric sequences that can be formed with all interior angles (all integer, in degrees) of a simple polygon. The other sequence is a subsequence of A000244 (see comment there). - Felix Huber, Feb 15 2024
A level 1 Sierpiński triangle is a triangle. Level n+1 is formed from three copies of level n by identifying pairs of corner vertices of each pair of triangles. For n>2, a(n-3) is the radius of the level n Sierpiński triangle graph. - Allan Bickle, Aug 03 2024

References

  • Jason I. Brown, Discrete Structures and Their Interactions, CRC Press, 2013, p. 71.
  • T. Ito, Method, equipment, program and storage media for producing tables, Publication number JP2004-272104A, Japan Patent Office (written in Japanese, a(2)=12, a(3)=24, a(4)=48, a(5)=96, a(6)=192, a(7)=384 (a(7)=284 was corrected)).
  • Kenji Ohkuma, Atsuhiro Yamagishi and Toru Ito, Cryptography Research Group Technical report, IT Security Center, Information-Technology Promotion Agency, JAPAN.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Subsequence of the following sequences: A029744, A029747, A029748, A029750, A362804 (after 3), A364494, A364496, A364289, A364291, A364292, A364295, A364497, A364964, A365422.
Essentially same as A003945 and A042950.
Row sums of (5, 1)-Pascal triangle A093562 and of (1, 5) Pascal triangle A096940.
Cf. Latin squares: A000315, A002860, A003090, A040082, A003191; Latin cubes: A098843, A098846, A098679, A099321.

Programs

Formula

G.f.: 3/(1-2*x).
a(n) = 2*a(n - 1), n > 0; a(0) = 3.
a(n) = Sum_{k = 0..n} (-1)^(k reduced (mod 3))*binomial(n, k). - Benoit Cloitre, Aug 20 2002
a(n) = A118416(n + 1, 2) for n > 1. - Reinhard Zumkeller, Apr 27 2006
a(n) = A000079(n) + A000079(n + 1). - Zerinvary Lajos, May 12 2007
a(n) = A000079(n)*3. - Omar E. Pol, Dec 16 2008
From Paul Curtz, Feb 05 2009: (Start)
a(n) = b(n) + b(n+3) for b = A001045, A078008, A154879.
a(n) = abs(b(n) - b(n+3)) with b(n) = (-1)^n*A084247(n). (End)
a(n) = 2^n + 2^(n + 1). - Jaroslav Krizek, Aug 17 2009
a(n) = A173786(n + 1, n) = A173787(n + 2, n). - Reinhard Zumkeller, Feb 28 2010
A216022(a(n)) = 6 and A216059(a(n)) = 7, for n > 0. - Reinhard Zumkeller, Sep 01 2012
a(n) = (A000225(n) + 1)*3. - Martin Ettl, Nov 11 2012
E.g.f.: 3*exp(2*x). - Ilya Gutkovskiy, May 15 2016
A020651(a(n)) = 2. - Yosu Yurramendi, Jun 01 2016
a(n) = sqrt(A014551(n + 1)*A014551(n + 2) + A014551(n)^2). - Ezhilarasu Velayutham, Sep 01 2019
a(A048672(n)) = A225546(A133466(n)). - Michel Marcus and Peter Munn, Nov 29 2019
Sum_{n>=1} 1/a(n) = 2/3. - Amiram Eldar, Oct 28 2020

A000918 a(n) = 2^n - 2.

Original entry on oeis.org

-1, 0, 2, 6, 14, 30, 62, 126, 254, 510, 1022, 2046, 4094, 8190, 16382, 32766, 65534, 131070, 262142, 524286, 1048574, 2097150, 4194302, 8388606, 16777214, 33554430, 67108862, 134217726, 268435454, 536870910, 1073741822, 2147483646, 4294967294, 8589934590, 17179869182, 34359738366, 68719476734, 137438953470
Offset: 0

Views

Author

Keywords

Comments

For n > 1, a(n) is the expected number of tosses of a fair coin to get n-1 consecutive heads. - Pratik Poddar, Feb 04 2011
For n > 2, Sum_{k=1..a(n)} (-1)^binomial(n, k) = A064405(a(n)) + 1 = 0. - Benoit Cloitre, Oct 18 2002
For n > 0, the number of nonempty proper subsets of an n-element set. - Ross La Haye, Feb 07 2004
Numbers j such that abs( Sum_{k=0..j} (-1)^binomial(j, k)*binomial(j + k, j - k) ) = 1. - Benoit Cloitre, Jul 03 2004
For n > 2 this formula also counts edge-rooted forests in a cycle of length n. - Woong Kook (andrewk(AT)math.uri.edu), Sep 08 2004
For n >= 1, conjectured to be the number of integers from 0 to (10^n)-1 that lack 0, 1, 2, 3, 4, 5, 6 and 7 as a digit. - Alexandre Wajnberg, Apr 25 2005
Beginning with a(2) = 2, these are the partial sums of the subsequence of A000079 = 2^n beginning with A000079(1) = 2. Hence for n >= 2 a(n) is the smallest possible sum of exactly one prime, one semiprime, one triprime, ... and one product of exactly n-1 primes. A060389 (partial sums of the primorials, A002110, beginning with A002110(1)=2) is the analog when all the almost primes must also be squarefree. - Rick L. Shepherd, May 20 2005
From the second term on (n >= 1), the binary representation of these numbers is a 0 preceded by (n - 1) 1's. This pattern (0)111...1110 is the "opposite" of the binary 2^n+1: 1000...0001 (cf. A000051). - Alexandre Wajnberg, May 31 2005
The numbers 2^n - 2 (n >= 2) give the positions of 0's in A110146. Also numbers k such that k^(k + 1) = 0 mod (k + 2). - Zak Seidov, Feb 20 2006
Partial sums of A155559. - Zerinvary Lajos, Oct 03 2007
Number of surjections from an n-element set onto a two-element set, with n >= 2. - Mohamed Bouhamida, Dec 15 2007
It appears that these are the numbers n such that 3*A135013(n) = n*(n + 1), thus answering Problem 2 on the Mathematical Olympiad Foundation of Japan, Final Round Problems, Feb 11 1993 (see link Japanese Mathematical Olympiad).
Let P(A) be the power set of an n-element set A and R be a relation on P(A) such that for all x, y of P(A), xRy if x is a proper subset of y or y is a proper subset of x and x and y are disjoint. Then a(n+1) = |R|. - Ross La Haye, Mar 19 2009
The permutohedron Pi_n has 2^n - 2 facets [Pashkovich]. - Jonathan Vos Post, Dec 17 2009
First differences of A005803. - Reinhard Zumkeller, Oct 12 2011
For n >= 1, a(n + 1) is the smallest even number with bit sum n. Cf. A069532. - Jason Kimberley, Nov 01 2011
a(n) is the number of branches of a complete binary tree of n levels. - Denis Lorrain, Dec 16 2011
For n>=1, a(n) is the number of length-n words on alphabet {1,2,3} such that the gap(w)=1. For a word w the gap g(w) is the number of parts missing between the minimal and maximal elements of w. Generally for words on alphabet {1,2,...,m} with g(w)=g>0 the e.g.f. is Sum_{k=g+2..m} (m - k + 1)*binomial((k - 2),g)*(exp(x) - 1)^(k - g). a(3)=6 because we have: 113, 131, 133, 311, 313, 331. Cf. A240506. See the Heubach/Mansour reference. - Geoffrey Critzer, Apr 13 2014
For n > 0, a(n) is the minimal number of internal nodes of a red-black tree of height 2*n-2. See the Oct 02 2015 comment under A027383. - Herbert Eberle, Oct 02 2015
Conjecture: For n>0, a(n) is the least m such that A007814(A000108(m)) = n-1. - L. Edson Jeffery, Nov 27 2015
Actually this follows from the procedure for determining the multiplicity of prime p in C(n) given in A000108 by Franklin T. Adams-Watters: For p=2, the multiplicity is the number of 1 digits minus 1 in the binary representation of n+1. Obviously, the smallest k achieving "number of 1 digits" = k is 2^k-1. Therefore C(2^k-2) is divisible by 2^(k-1) for k > 0 and there is no smaller m for which 2^(k-1) divides C(m) proving the conjecture. - Peter Schorn, Feb 16 2020
For n >= 0, a(n) is the largest number you can write in bijective base-2 (a.k.a. the dyadic system, A007931) with n digits. - Harald Korneliussen, May 18 2019
The terms of this sequence are also the sum of the terms in each row of Pascal's triangle other than the ones. - Harvey P. Dale, Apr 19 2020
For n > 1, binomial(a(n),k) is odd if and only if k is even. - Charlie Marion, Dec 22 2020
For n >= 2, a(n+1) is the number of n X n arrays of 0's and 1's with every 2 X 2 square having density exactly 2. - David desJardins, Oct 27 2022
For n >= 1, a(n+1) is the number of roots of unity in the unique degree-n unramified extension of the 2-adic field Q_2. Note that for each p, the unique degree-n unramified extension of Q_p is the splitting field of x^(p^n) - x, hence containing p^n - 1 roots of unity for p > 2 and 2*(2^n - 1) for p = 2. - Jianing Song, Nov 08 2022

Examples

			a(4) = 14 because the 14 = 6 + 4 + 4 rationals (in lowest terms) for n = 3 are (see the Jun 14 2017 formula above): 1/2, 1, 3/2, 2, 5/2, 3; 1/4, 3/4, 5/4, 7/4; 1/8, 3/8, 5/8, 7/8. - _Wolfdieter Lang_, Jun 14 2017
		

References

  • H. T. Davis, Tables of the Mathematical Functions. Vols. 1 and 2, 2nd ed., 1963, Vol. 3 (with V. J. Fisher), 1962; Principia Press of Trinity Univ., San Antonio, TX, Vol. 2, p. 212.
  • Ralph P. Grimaldi, Discrete and Combinatorial Mathematics: An Applied Introduction, Fifth Edition, Addison-Wesley, 2004, p. 134. - Mohammad K. Azarian, Oct 27 2011
  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009 page 86, Exercise 3.16.
  • J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, p. 33.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • A. H. Voigt, Theorie der Zahlenreihen und der Reihengleichungen, Goschen, Leipzig, 1911, p. 31.

Crossrefs

Row sums of triangle A026998.
Cf. A058809 (3^n-3, n>0).

Programs

  • Haskell
    a000918 = (subtract 2) . (2 ^)
    a000918_list = iterate ((subtract 2) . (* 2) . (+ 2)) (- 1)
    -- Reinhard Zumkeller, Apr 23 2013
    
  • Magma
    [2^n - 2: n in [0..40]]; // Vincenzo Librandi, Jun 23 2011
    
  • Maple
    seq(2^n-2,n=0..20) ;
  • Mathematica
    Table[2^n - 2, {n, 0, 29}] (* Alonso del Arte, Dec 01 2012 *)
  • PARI
    a(n)=2^n-2 \\ Charles R Greathouse IV, Jun 16 2011
    
  • Python
    def A000918(n): return (1<Chai Wah Wu, Jun 10 2025

Formula

a(n) = 2*A000225(n-1).
G.f.: 1/(1 - 2*x) - 2/(1 - x), e.g.f.: (e^x - 1)^2 - 1. - Dan Fux (dan.fux(AT)OpenGaia.com or danfux(AT)OpenGaia.com), Apr 07 2001
For n >= 1, a(n) = A008970(n + 1, 2). - Philippe Deléham, Feb 21 2004
G.f.: (3*x - 1)/((2*x - 1)*(x - 1)). - Simon Plouffe in his 1992 dissertation for the sequence without the leading -1
a(n) = 2*a(n - 1) + 2. - Alexandre Wajnberg, Apr 25 2005
a(n) = A000079(n) - 2. - Omar E. Pol, Dec 16 2008
a(n) = A058896(n)/A052548(n). - Reinhard Zumkeller, Feb 14 2009
a(n) = A164874(n - 1, n - 1) for n > 1. - Reinhard Zumkeller, Aug 29 2009
a(n) = A173787(n,1); a(n) = A028399(2*n)/A052548(n), n > 0. - Reinhard Zumkeller, Feb 28 2010
a(n + 1) = A027383(2*n - 1). - Jason Kimberley, Nov 02 2011
G.f.: U(0) - 1, where U(k) = 1 + x/(2^k + 2^k/(x - 1 - x^2*2^(k + 1)/(x*2^(k + 1) - (k + 1)/U(k + 1) ))); (continued fraction, 3rd kind, 4-step). - Sergei N. Gladkovskii, Dec 01 2012
a(n+1) is the sum of row n in triangle A051601. - Reinhard Zumkeller, Aug 05 2013
a(n+1) = A127330(n,0). - Reinhard Zumkeller, Nov 16 2013
a(n) = Sum_{k=1..n-1} binomial(n, k) for n > 0. - Dan McCandless, Nov 14 2015
From Miquel Cerda, Aug 16 2016: (Start)
a(n) = A000225(n) - 1.
a(n) = A125128(n-1) - A000325(n).
a(n) = A095151(n) - A125128(n) - 1. (End)
a(n+1) = 2*(n + Sum_{j=1..n-1} (n-j)*2^(j-1)), n >= 1. This is the number of the rationals k/2, k = 1..2*n for n >= 1 and (2*k+1)/2^j for j = 2..n, n >= 2, and 2*k+1 < n-(j-1). See the example for n = 3 below. Motivated by the proposal A287012 by Mark Rickert. - Wolfdieter Lang, Jun 14 2017

Extensions

Maple programs fixed by Vaclav Kotesovec, Dec 13 2014

A006516 a(n) = 2^(n-1)*(2^n - 1), n >= 0.

Original entry on oeis.org

0, 1, 6, 28, 120, 496, 2016, 8128, 32640, 130816, 523776, 2096128, 8386560, 33550336, 134209536, 536854528, 2147450880, 8589869056, 34359607296, 137438691328, 549755289600, 2199022206976, 8796090925056, 35184367894528, 140737479966720, 562949936644096
Offset: 0

Views

Author

Keywords

Comments

a(n) is also the number of different lines determined by pair of vertices in an n-dimensional hypercube. The number of these lines modulo being parallel is in A003462. - Ola Veshta (olaveshta(AT)my-deja.com), Feb 15 2001
Let G_n be the elementary Abelian group G_n = (C_2)^n for n >= 1: A006516 is the number of times the number -1 appears in the character table of G_n and A007582 is the number of times the number 1. Together the two sequences cover all the values in the table, i.e., A006516(n) + A007582(n) = 2^(2n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Jun 01 2001
a(n) is the number of n-letter words formed using four distinct letters, one of which appears an odd number of times. - Lekraj Beedassy, Jul 22 2003 [See, e.g., the Balakrishnan reference, problems 2.67 and 2.68, p. 69. - Wolfdieter Lang, Jul 16 2017]
Number of 0's making up the central triangle in a Pascal's triangle mod 2 gasket. - Lekraj Beedassy, May 14 2004
m-th triangular number, where m is the n-th Mersenne number, i.e., a(n)=A000217(A000225(n)). - Lekraj Beedassy, May 25 2004
Number of walks of length 2n+1 between two nodes at distance 3 in the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
The sequence of fractions a(n+1)/(n+1) is the 3rd binomial transform of (1, 0, 1/3, 0, 1/5, 0, 1/7, ...). - Paul Barry, Aug 05 2005
Number of monic irreducible polynomials of degree 2 in GF(2^n)[x]. - Max Alekseyev, Jan 23 2006
(A007582(n))^2 + a(n)^2 = A007582(2n). E.g., A007582(3) = 36, a(3) = 28; A007582(6) = 2080. 36^2 + 28^2 = 2080. - Gary W. Adamson, Jun 17 2006
The sequence 6*a(n), n>=1, gives the number of edges of the Hanoi graph H_4^{n} with 4 pegs and n>=1 discs. - Daniele Parisse, Jul 28 2006
8*a(n) is the total border length of the 4*n masks used when making an order n regular DNA chip, using the bidimensional Gray code suggested by Pevzner in the book "Computational Molecular Biology." - Bruno Petazzoni (bruno(AT)enix.org), Apr 05 2007
If we start with 1 in binary and at each step we prepend 1 and append 0, we construct this sequence: 1 110 11100 1111000 etc.; see A109241(n-1). - Artur Jasinski, Nov 26 2007
Let P(A) be the power set of an n-element set A. Then a(n) = the number of pairs of elements {x,y} of P(A) for which x does not equal y. - Ross La Haye, Jan 02 2008
Wieder calls these "conjoint usual 2-combinations." The set of "conjoint strict k-combinations" is the subset of conjoint usual k-combinations where the empty set and the set itself are excluded from possible selection. These numbers C(2^n - 2,k), which for k = 2 (i.e., {x,y} of the power set of a set) give {1, 0, 1, 15, 91, 435, 1891, 7875, 32131, 129795, 521731, ...}. - Ross La Haye, Jan 15 2008
If n is a member of A000043 then a(n) is also a perfect number (A000396). - Omar E. Pol, Aug 30 2008
a(n) is also the number whose binary representation is A109241(n-1), for n>0. - Omar E. Pol, Aug 31 2008
From Daniel Forgues, Nov 10 2009: (Start)
If we define a spoof-perfect number as:
A spoof-perfect number is a number that would be perfect if some (one or more) of its odd composite factors were wrongly assumed to be prime, i.e., taken as a spoof prime.
And if we define a "strong" spoof-perfect number as:
A "strong" spoof-perfect number is a spoof-perfect number where sigma(n) does not reveal the compositeness of the odd composite factors of n which are wrongly assumed to be prime, i.e., taken as a spoof prime.
The odd composite factors of n which are wrongly assumed to be prime then have to be obtained additively in sigma(n) and not multiplicatively.
Then:
If 2^n-1 is odd composite but taken as a spoof prime then 2^(n-1)*(2^n - 1) is an even spoof perfect number (and moreover "strong" spoof-perfect).
For example:
a(8) = 2^(8-1)*(2^8 - 1) = 128*255 = 32640 (where 255 (with factors 3*5*17) is taken as a spoof prime);
sigma(a(8)) = (2^8 - 1)*(255 + 1) = 255*256 = 2*(128*255) = 2*32640 = 2n is spoof-perfect (and also "strong" spoof-perfect since 255 is obtained additively);
a(11) = 2^(11-1)*(2^11 - 1) = 1024*2047 = 2096128 (where 2047 (with factors 23*89) is taken as a spoof prime);
sigma(a(11)) = (2^11 - 1)*(2047 + 1) = 2047*2048 = 2*(1024*2047) = 2*2096128 = 2n is spoof-perfect (and also "strong" spoof-perfect since 2047 is obtained additively).
I did a Google search and didn't find anything about the distinction between "strong" versus "weak" spoof-perfect numbers. Maybe some other terminology is used.
An example of an even "weak" spoof-perfect number would be:
n = 90 = 2*5*9 (where 9 (with factors 3^2) is taken as a spoof prime);
sigma(n) = (1+2)*(1+5)*(1+9) = 3*(2*3)*(2*5) = 2*(2*5*(3^2)) = 2*90 = 2n is spoof-perfect (but is not "strong" spoof-perfect since 9 is obtained multiplicatively as 3^2 and is thus revealed composite).
Euler proved:
If 2^k - 1 is a prime number, then 2^(k-1)*(2^k - 1) is a perfect number and every even perfect number has this form.
The following seems to be true (is there a proof?):
If 2^k - 1 is an odd composite number taken as a spoof prime, then 2^(k-1)*(2^k - 1) is a "strong" spoof-perfect number and every even "strong" spoof-perfect number has this form?
There is only one known odd spoof-perfect number (found by Rene Descartes) but it is a "weak" spoof-perfect number (cf. 'Descartes numbers' and 'Unsolved problems in number theory' links below). (End)
a(n+1) = A173787(2*n+1,n); cf. A020522, A059153. - Reinhard Zumkeller, Feb 28 2010
Also, row sums of triangle A139251. - Omar E. Pol, May 25 2010
Starting with "1" = (1, 1, 2, 4, 8, ...) convolved with A002450: (1, 5, 21, 85, 341, ...); and (1, 3, 7, 15, 31, ...) convolved with A002001: (1, 3, 12, 48, 192, ...). - Gary W. Adamson, Oct 26 2010
a(n) is also the number of toothpicks in the corner toothpick structure of A153006 after 2^n - 1 stages. - Omar E. Pol, Nov 20 2010
The number of n-dimensional odd theta functions of half-integral characteristic. (Gunning, p.22) - Michael Somos, Jan 03 2014
a(n) = A000217((2^n)-1) = 2^(2n-1) - 2^(n-1) is the nearest triangular number below 2^(2n-1); cf. A007582, A233327. - Antti Karttunen, Feb 26 2014
a(n) is the sum of all the remainders when all the odd numbers < 2^n are divided by each of the powers 2,4,8,...,2^n. - J. M. Bergot, May 07 2014
Let b(m,k) = number of ways to form a sequence of m selections, without replacement, from a circular array of m labeled cells, such that the first selection of a cell whose adjacent cells have already been selected (a "first connect") occurs on the k-th selection. b(m,k) is defined for m >=3, and for 3 <= k <= m. Then b(m,k)/2m ignores rotations and reflection. Let m=n+2, then a(n) = b(m,m-1)/2m. Reiterated, a(n) is the (m-1)th column of the triangle b(m,k)/2m, whose initial rows are (1), (1 2), (2 6 4), (6 18 28 8), (24 72 128 120 16), (120 360 672 840 496 32), (720 2160 4128 5760 5312 2016 64); see A249796. Note also that b(m,3)/2m = n!, and b(m,m)/2m = 2^n. Proofs are easy. - Tony Bartoletti, Oct 30 2014
Beginning at a(1) = 1, this sequence is the sum of the first 2^(n-1) numbers of the form 4*k + 1 = A016813(k). For example, a(4) = 120 = 1 + 5 + 9 + 13 + 17 + 21 + 25 + 29. - J. M. Bergot, Dec 07 2014
a(n) is the number of edges in the (2^n - 1)-dimensional simplex. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete plane graph in 2^n points. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of linear elements in a complete parallelotope graph in n dimensions. - Dimitri Boscainos, Oct 05 2015
a(n) is the number of lattices L in Z^n such that the quotient group Z^n / L is C_4. - Álvar Ibeas, Nov 26 2015
a(n) gives the quadratic coefficient of the polynomial ((x + 1)^(2^n) + (x - 1)^(2^n))/2, cf. A201461. - Martin Renner, Jan 14 2017
Let f(x)=x+2*sqrt(x) and g(x)=x-2*sqrt(x). Then f(4^n*x)=b(n)*f(x)+a(n)*g(x) and g(4^n*x)=a(n)*f(x)+b(n)*g(x), where b is A007582. - Luc Rousseau, Dec 06 2018
For n>=1, a(n) is the covering radius of the first order Reed-Muller code RM(1,2n). - Christof Beierle, Dec 22 2021
a(n) =

Examples

			G.f. = x + 6*x^2 + 28*x^3 + 120*x^4 + 496*x^5 + 2016*x^6 + 8128*x^7 + 32640*x^8 + ...
		

References

  • V. K. Balakrishnan, Theory and problems of Combinatorics, "Schaum's Outline Series", McGraw-Hill, 1995, p. 69.
  • Martin Gardner, Mathematical Carnival, "Pascal's Triangle", p. 201, Alfred A. Knopf NY, 1975.
  • Richard K. Guy, Unsolved problems in number theory, (p. 72).
  • Ross Honsberger, Mathematical Gems, M.A.A., 1973, p. 113.
  • Clifford A. Pickover, Wonders of Numbers, Chap. 55, Oxford Univ. Press NY 2000.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Equals A006095(n+1) - A006095(n). In other words, A006095 gives the partial sums.
Cf. A000043, A000396. - Omar E. Pol, Aug 30 2008
Cf. A109241, A139251, A153006. - Omar E. Pol, Aug 31 2008, May 25 2010, Nov 20 2010
Cf. A002450, A002001. - Gary W. Adamson, Oct 26 2010
Cf. A049072, A000384, A201461, A005059 (binomial transform, and special 5-letter words), A065442, A211705.
Cf. A171476.

Programs

  • GAP
    List([0..25],n->2^(n-1)*(2^n-1)); # Muniru A Asiru, Dec 06 2018
  • Haskell
    a006516 n = a006516_list !! n
    a006516_list = 0 : 1 :
        zipWith (-) (map (* 6) $ tail a006516_list) (map (* 8) a006516_list)
    -- Reinhard Zumkeller, Oct 25 2013
    
  • Magma
    [2^(n-1)*(2^n - 1): n in [0..30]]; // Vincenzo Librandi, Oct 31 2014
    
  • Maple
    GBC := proc(n,k,q) local i; mul( (q^(n-i)-1)/(q^(k-i)-1),i=0..k-1); end; # define q-ary Gaussian binomial coefficient [ n,k ]_q
    [ seq(GBC(n+1,2,2)-GBC(n,2,2), n=0..30) ]; # produces A006516
    A006516:=1/(4*z-1)/(2*z-1); # Simon Plouffe in his 1992 dissertation
    seq(binomial(2^n, 2), n=0..19); # Zerinvary Lajos, Feb 22 2008
  • Mathematica
    Table[2^(n - 1)(2^n - 1), {n, 0, 30}] (* or *) LinearRecurrence[{6, -8}, {0, 1}, 30] (* Harvey P. Dale, Jul 15 2011 *)
  • Maxima
    A006516(n):=2^(n-1)*(2^n - 1)$ makelist(A006516(n),n,0,30); /* Martin Ettl, Nov 15 2012 */
    
  • PARI
    a(n)=(1<Charles R Greathouse IV, Jun 10 2011
    
  • PARI
    vector(100, n, n--; 2^(n-1)*(2^n-1)) \\ Altug Alkan, Oct 06 2015
    
  • Python
    for n in range(0, 30): print(2**(n-1)*(2**n - 1), end=', ') # Stefano Spezia, Dec 06 2018
    
  • Sage
    [lucas_number1(n,6,8) for n in range(24)]  # Zerinvary Lajos, Apr 22 2009
    
  • Sage
    [(4**n - 2**n) / 2 for n in range(24)]  # Zerinvary Lajos, Jun 05 2009
    

Formula

G.f.: x/((1 - 2*x)*(1 - 4*x)).
E.g.f. for a(n+1), n>=0: 2*exp(4*x) - exp(2*x).
a(n) = 2^(n-1)*Stirling2(n+1,2), n>=0, with Stirling2(n,m)=A008277(n,m).
Second column of triangle A075497.
a(n) = Stirling2(2^n,2^n-1) = binomial(2^n,2). - Ross La Haye, Jan 12 2008
a(n+1) = 4*a(n) + 2^n. - Philippe Deléham, Feb 20 2004
Convolution of 4^n and 2^n. - Ross La Haye, Oct 29 2004
a(n+1) = Sum_{k=0..n} Sum_{j=0..n} 4^(n-j)*binomial(j,k). - Paul Barry, Aug 05 2005
a(n+2) = 6*a(n+1) - 8*a(n), a(1) = 1, a(2) = 6. - Daniele Parisse, Jul 28 2006 [Typo corrected by Yosu Yurramendi, Aug 06 2008]
Row sums of triangle A134346. Also, binomial transform of A048473: (1, 5, 17, 53, 161, ...); double bt of A151821: (1, 4, 8, 16, 32, 64, ...) and triple bt of A010684: (1, 3, 1, 3, 1, 3, ...). - Gary W. Adamson, Oct 21 2007
a(n) = 3*Stirling2(n+1,4) + Stirling2(n+2,3). - Ross La Haye, Jun 01 2008
a(n) = (4^n - 2^n)/2.
a(n) = A153006(2^n-1). - Omar E. Pol, Nov 20 2010
Sum_{n>=1} 1/a(n) = 2 * (A065442 - 1) = A211705 - 2. - Amiram Eldar, Dec 24 2020
a(n) = binomial(2*n+2, n+1) - Catalan(n+2). - N. J. A. Sloane, Apr 01 2021
a(n) = A171476(n-1), for n >= 1, and a(0) = 0. - Wolfdieter Lang, Jul 27 2022

A000337 a(n) = (n-1)*2^n + 1.

Original entry on oeis.org

0, 1, 5, 17, 49, 129, 321, 769, 1793, 4097, 9217, 20481, 45057, 98305, 212993, 458753, 983041, 2097153, 4456449, 9437185, 19922945, 41943041, 88080385, 184549377, 385875969, 805306369, 1677721601, 3489660929, 7247757313, 15032385537, 31138512897, 64424509441
Offset: 0

Views

Author

Keywords

Comments

a(n) also gives number of 0's in binary numbers 1 to 111..1 (n+1 bits). - Stephen G Penrice, Oct 01 2000
Numerator of m(n) = (m(n-1)+n)/2, m(0)=0. Denominator is A000079. - Reinhard Zumkeller, Feb 23 2002
a(n) is the number of directed column-convex polyominoes of area n+2 having along the lower contour exactly one vertical step that is followed by a horizontal step (a reentrant corner). - Emeric Deutsch, May 21 2003
a(n) is the number of bits in binary numbers from 1 to 111...1 (n bits). Partial sums of A001787. - Emeric Deutsch, May 24 2003
Genus of graph of n-cube = a(n-3) = 1+(n-4)*2^(n-3), n>1.
Sum of ordered partitions of n where each element is summed via T(e-1). See A066185 for more information. - Jon Perry, Dec 12 2003
a(n-2) is the number of Dyck n-paths with exactly one peak at height >= 3. For example, there are 5 such paths with n=4: UUUUDDDD, UUDUUDDD, UUUDDUDD, UDUUUDDD, UUUDDDUD. - David Callan, Mar 23 2004
Permutations in S_{n+2} avoiding 12-3 that contain the pattern 13-2 exactly once.
a(n) is prime for n = 2, 3, 7, 27, 51, 55, 81. a(n) is semiprime for n = 4, 5, 6, 8, 9, 10, 11, 13, 15, 19, 28, 32, 39, 57, 63, 66, 75, 97. - Jonathan Vos Post, Jul 18 2005
A member of the family of sequences defined by a(n) = Sum_{i=1..n} i*[c(1)*...*c(r)]^(i-1). This sequence has c(1)=2, A014915 has c(1)=3. - Ctibor O. Zizka, Feb 23 2008
Starting with 1 = row sums of A023758 as a triangle by rows: [1; 2,3; 4,6,7; 8,12,14,15; ...]. - Gary W. Adamson, Jul 18 2008
Equivalent formula given in Brehm: for each q >= 3 there exists a polyhedral map M_q of type {4, q} with [number of vertices] f_0 = 2^q and [genus] g = (2^(q-3))*(q-4) + 1 such that M_q and its dual have polyhedral embeddings in R^3 [McMullen et al.]. - Jonathan Vos Post, Jul 25 2009
Sums of rows of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
This sequence is related to A000079 by a(n) = n*A000079(n)-Sum_{i=0..n-1} A000079(i). - Bruno Berselli, Mar 06 2012
(1 + 5*x + 17*x^2 + 49*x^3 + ...) = (1 + 2*x + 4*x^2 + 8*x^3 + ...) * (1 + 3*x + 7*x^2 + 15*x^3 + ...). - Gary W. Adamson, Mar 14 2012
The first barycentric coordinate of the centroid of Pascal triangles, assuming that numbers are weights, is A000295(n+1)/A000337(n), no matter what the triangle sides are. See attached figure. - César Eliud Lozada, Nov 14 2014
a(n) is the n-th number that is a sum of n positive n-th powers for n >= 1. a(4) = 49 = A003338(4). - Alois P. Heinz, Aug 01 2020
a(n) is the sum of the largest elements of all subsets of {1,2,..,n}. For example, a(3)=17; the subsets of {1,2,3} are {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}, and the sum of the largest elements is 17. - Enrique Navarrete, Aug 20 2020
a(n-1) is the sum of the second largest elements of the subsets of {1,2,..,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}, and the sum of the second largest elements is 17. - Enrique Navarrete, Aug 24 2020
a(n-1) is also the sum of diameters of all subsets of {1,2,...,n} that contain n. For example, for n = 4, a(3)=17; the subsets of {1,2,3,4} that contain 4 are {4}, {1,4}, {2,4}, {3,4}, {1,2,4}, {1,3,4}, {2,3,4}, {1,2,3,4}; the diameters of these sets are 0,3,2,1,3,3,2,3 and the sum is 17. - Enrique Navarrete, Sep 07 2020
a(n-1) is also the number of additions required to compute the permanent of general n X n matrices using trellis methods (see Theorems 5 and 6, pp. 10-11 in Kiah et al.). - Stefano Spezia, Nov 02 2021

References

  • F. Harary, Topological concepts in graph theory, pp. 13-17 of F. Harary and L. Beineke, editors, A seminar on Graph Theory, Holt, Rinehart and Winston, New York, 1967.
  • V. G. Gutierrez and S. L. de Medrano, Surfaces as complete intersections, in Riemann and Klein Surfaces, Automorphisms, Symmetries and Moduli Spaces, edited by Milagros Izquierdo, S. Allen Broughton, Antonio F. Costa, Contemp. Math. vol. 629, 2014, pp. 171-.
  • F. Harary, Graph Theory. Addison-Wesley, Reading, MA, 1969, p. 119.
  • G. H. Hardy, A Theorem Concerning the Infinite Cardinal Numbers, Quart. J. Math., 35 (1904), p. 90 = Collected Papers of G. H. Hardy, Vol. VII, p. 430.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = T(3, n), array T given by A048472. A036799/2.
Cf. A003338.
Main diagonal of A336725.

Programs

  • GAP
    List([0..30],n->(n-1)*2^n+1); # Muniru A Asiru, Oct 24 2018
  • Magma
    [(n-1)*2^n + 1: n in [0..40]]; // Vincenzo Librandi, Nov 21 2014
    
  • Maple
    A000337 := proc(n) 1+(n-1)*2^n ; end proc: # R. J. Mathar, Oct 10 2011
  • Mathematica
    Table[Sum[(-1)^(n - k) k (-1)^(n - k) Binomial[n + 1, k + 1], {k, 0, n}], {n, 0, 28}] (* Zerinvary Lajos, Jul 08 2009 *)
    Table[(n - 1) 2^n + 1, {n, 0, 40}] (* Harvey P. Dale, Jun 21 2011 *)
    LinearRecurrence[{5, -8, 4}, {0, 1, 5}, 40] (* Harvey P. Dale, Jun 21 2011 *)
    CoefficientList[Series[x / ((1 - x) (1 - 2 x)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Nov 21 2014 *)
  • PARI
    a(n)=if(n<0,0,(n-1)*2^n+1)
    
  • Python
    a=lambda n:((n-1)<<(n))+1 # Indranil Ghosh, Jan 05 2017
    

Formula

Binomial transform of A004273. Binomial transform of A008574 if the leading zero is dropped.
G.f.: x/((1-x)*(1-2*x)^2). - Simon Plouffe in his 1992 dissertation
E.g.f.: exp(x) - exp(2*x)*(1-2*x). a(n) = 4*a(n-1) - 4*a(n-2)+1, n>0. Series reversion of g.f. A(x) is x*A034015(-x). - Michael Somos
Binomial transform of n/(n+1) is a(n)/(n+1). - Paul Barry, Aug 19 2005
a(n) = A119258(n+1,n-1) for n>0. - Reinhard Zumkeller, May 11 2006
Convolution of "Number of fixed points in all 231-avoiding involutions in S_n" (A059570) with "The odd numbers" (A005408), treating the result as if offset=0. - Graeme McRae, Jul 12 2006
a(n) = Sum_{k=1..n} k*2^(k-1), partial sums of A001787. - Zerinvary Lajos, Oct 19 2006
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3), n > 2. - Harvey P. Dale, Jun 21 2011
a(n) = Sum_{k=1..n} Sum_{i=1..n} i * C(k,i). - Wesley Ivan Hurt, Sep 19 2017
a(n) = A000295(n+1)^2 - A000295(n)*A000295(n+2). - Gregory Gerard Wojnar, Oct 23 2018

A005009 a(n) = 7*2^n.

Original entry on oeis.org

7, 14, 28, 56, 112, 224, 448, 896, 1792, 3584, 7168, 14336, 28672, 57344, 114688, 229376, 458752, 917504, 1835008, 3670016, 7340032, 14680064, 29360128, 58720256, 117440512, 234881024, 469762048, 939524096, 1879048192, 3758096384
Offset: 0

Views

Author

Keywords

Comments

The first differences are the sequence itself. - Alexandre Wajnberg & Eric Angelini, Sep 07 2005

Crossrefs

Sequences of the form (2*m+1)*2^n: A000079 (m=0), A007283 (m=1), A020714 (m=2), this sequence (m=3), A005010 (m=4), A005015 (m=5), A005029 (m=6), A110286 (m=7), A110287 (m=8), A110288 (m=9), A175805 (m=10), A248646 (m=11), A164161 (m=12), A175806 (m=13), A257548 (m=15).
Row sums of (6, 1)-Pascal triangle A093563 and of (1, 6)-Pascal triangle A096956, n>=1.

Programs

Formula

G.f.: 7/(1-2*x).
a(n) = A118416(n+1,4) for n > 3. - Reinhard Zumkeller, Apr 27 2006
a(n) = 2*a(n-1), for n > 0, with a(0)=7 . - Philippe Deléham, Nov 23 2008
a(n) = 7 * A000079(n). - Omar E. Pol, Dec 16 2008
a(n) = A173787(n+3,n). - Reinhard Zumkeller, Feb 28 2010
Intersection of A014311 and A212191: all terms and their squares are the sum of exactly three distinct powers of 2, A000120(a(n)) = A000120(a(n)^2) = 3. - Reinhard Zumkeller, May 03 2012
G.f.: 2/x/G(0) - 1/x + 9, where G(k)= 1 + 1/(1 - x*(7*k+2)/(x*(7*k+9) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 03 2013
E.g.f.: 7*exp(2*x). - Stefano Spezia, May 15 2021

A020522 a(n) = 4^n - 2^n.

Original entry on oeis.org

0, 2, 12, 56, 240, 992, 4032, 16256, 65280, 261632, 1047552, 4192256, 16773120, 67100672, 268419072, 1073709056, 4294901760, 17179738112, 68719214592, 274877382656, 1099510579200, 4398044413952, 17592181850112, 70368735789056, 281474959933440
Offset: 0

Views

Author

Keywords

Comments

Number of walks of length 2*n+2 between any two diametrically opposite vertices of the cycle graph C_8. - Herbert Kociemba, Jul 02 2004
If we consider a(4*k+2), then 2^4 == 3^4 == 3 (mod 13); 2^(4*k+2) + 3^(4*k+2) == 3^k*(4+9) == 3*0 == 0 (mod 13). So a(4*k+2) can never be prime. - Jose Brox, Dec 27 2005
If k is odd, then a(n*k) is divisible by a(n), since: a(n*k) = (2^n)^k + (3^n)^k = (2^n + 3^n)*((2^n)^(k-1) - (2^n)^(k-2) (3^n) + - ... + (3^n)^(k-1)). So the only possible primes in the sequence are a(0) and a(2^n) for n>=1. I've checked that a(2^n) is composite for 3 <= n <= 15. As with Fermat primes, a probabilistic argument suggests that there are only finitely many primes in the sequence. - Dean Hickerson, Dec 27 2005
Let x,y,z be elements from some power set P(n), i.e., the power set of a set of n elements. Define a function f(x,y,z) in the following manner: f(x,y,z) = 1 if x is a subset of y and y is a subset of z and x does not equal z; f(x,y,z) = 0 if x is not a subset of y or y is not a subset of z or x equals z. Now sum f(x,y,z) for all x,y,z of P(n). This gives a(n). - Ross La Haye, Dec 26 2005
Number of monic (irreducible) polynomials of degree 1 over GF(2^n). - Max Alekseyev, Jan 13 2006
Let P(A) be the power set of an n-element set A and B be the Cartesian product of P(A) with itself. Then a(n) = the number of (x,y) of B for which x does not equal y. - Ross La Haye, Jan 02 2008
For n>1: central terms of the triangle in A173787. - Reinhard Zumkeller, Feb 28 2010
Pronic numbers of the form: (2^n - 1)*2^n, which is the n-th Mersenne number times 2^n, see A000225 and A002378. - Fred Daniel Kline, Nov 30 2013
Indices where records of A037870 occur. - Philippe Beaudoin, Sep 03 2014
Half the total edge length for a minimum linear arrangement of a hypercube of dimension n. (See Harper's paper below for proof). - Eitan Frachtenberg, Apr 07 2017
Number of pairs in GF(2)^{n+1} whose dot product is 1. - Christopher Purcell, Dec 11 2021

Examples

			n=5: a(5) = 4^5 - 2^5 = 1024 - 32 = 992 -> '1111100000'.
		

Crossrefs

Ratio of successive terms of A028365.

Programs

Formula

From Herbert Kociemba, Jul 02 2004: (Start)
G.f.: 2*x/((-1 + 2*x)*(-1 + 4*x)).
a(n) = 6*a(n-1) - 8*a(n-2). (End)
E.g.f.: exp(4*x) - exp(2*x). - Mohammad K. Azarian, Jan 14 2009
From Reinhard Zumkeller, Feb 07 2006, Jaroslav Krizek, Aug 02 2009: (Start)
a(n) = A099393(n)-A000225(n+1) = A083420(n)-A099393(n).
In binary representation, n>0: n 1's followed by n 0's (A138147(n)).
A000120(a(n)) = n.
A023416(a(n)) = n.
A070939(a(n)) = 2*n.
2*a(n)+1 = A030101(A099393(n)). (End)
a(n) = A085812(n) - A001700(n). - John Molokach, Sep 28 2013
a(n) = 2*A006516(n) = A000079(n)*A000225(n) = A265736(A000225(n)). - Reinhard Zumkeller, Dec 15 2015
a(n) = (4^(n/2) - 4^(n/4))*(4^(n/2) + 4^(n/4)). - Bruno Berselli, Apr 09 2018
Sum_{n>0} 1/a(n) = E - 1, where E is the Erdős-Borwein constant (A065442). - Peter McNair, Dec 19 2022
a(n) = A000302(n) - A000079(n). - John Reimer Morales, Aug 04 2025

A028399 a(n) = 2^n - 4.

Original entry on oeis.org

0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2

Views

Author

Keywords

Comments

Number of permutations of [n] with 2 sequences.
Number of 2 X n binary matrices that avoid simultaneously the right angled numbered polyomino patterns (ranpp) (00;1) and (11;0). An occurrence of a ranpp (xy;z) in a matrix A=(a(i,j)) is a triple (a(i1,j1), a(i1,j2), a(i2,j1)) where i1Sergey Kitaev, Nov 11 2004
The number of edges in the dual Edwards-Venn diagram graph with n-1 digits when n>2.
a(n) (n>=6) is the number of vertices in the molecular graph NS2[n-5], defined pictorially in the Ashrafi et al. reference (Fig. 2, where NS2[2] is shown). - Emeric Deutsch, May 16 2018
From Petros Hadjicostas, Aug 08 2019: (Start)
With regard to the comment above about a(n) being the "number of permutations of [n] with 2 sequences", we refer to Ex. 13 (pp. 260-261) of Comtet (1974), who uses the definition of a "séquence" given by André in several of his papers in the 19th century.
In the terminology of array A059427, these so-called "séquences" in permutations (defined by Comtet and André) are called "alternating runs" (or just "runs"). We discuss these so-called "séquences" below.
If b = (b_1, b_2, ..., b_n) is a permutation of [n], written in one-line notation (not in cycle notation), a "séquence" in a permutation of length l >= 2 (according to Comtet) is a maximal interval of integers {i, i+1, ..., i+l-1} for some i (where 1 <= i <= n-l+1) such that b_i < b_{i+1} < ... < b_{i+l-1} or b_i > b_{i+1} > ... > b_{i+l-1}. (The word "maximal" means that, in the first case, we have b_{i-1} > b_i and b_{i+l} < b_{i+l-1}, while in the second case, we have b_{i-1} < b_i and b_{i+l} > b_{i+l-1} provided b_{i-1} and b_{i+l} can be defined.)
When defining a "séquence", André (1884) actually refers to the list of terms (b_i, b_{i+1}, ..., b_{i+l-1}) rather than the corresponding index set {i, i+1, ..., i+l-1} (which is essentially the same thing).
For more details about these so-called "séquences" (or "alternate runs"), see the comments and examples for sequence A000708.
(End)
For n >= 1, a(n+2) is the number of shortest paths from (0,0) of a square grid to {(x,y): |x|+|y| = n} along the grid line. - Jianing Song, Aug 23 2021

Examples

			From _Petros Hadjicostas_, Aug 08 2019: (Start)
We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"):
   123 -> 123 (one),
   132 -> 13, 32 (two),
   213 -> 21, 13 (two),
   231 -> 23, 31 (two),
   312 -> 31, 12 (two),
   321 -> 321 (one).
Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common.
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
  • A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.

Crossrefs

Column k = 2 of A059427.
Row n = 2 of A371064.

Programs

  • GAP
    a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
    
  • Maple
    seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
  • Mathematica
    2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
  • PARI
    a(n)=if(n<2, 0, 2^n-4)
    
  • Python
    def A028399(n): return (1<Chai Wah Wu, Jun 27 2023

Formula

O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A175164(2*n)/A140504(n+2);
a(2*n) = A052548(n)*A000918(n) for n > 0;
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021

Extensions

Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001

A059268 Concatenate subsequences [2^0, 2^1, ..., 2^n] for n = 0, 1, 2, ...

Original entry on oeis.org

1, 1, 2, 1, 2, 4, 1, 2, 4, 8, 1, 2, 4, 8, 16, 1, 2, 4, 8, 16, 32, 1, 2, 4, 8, 16, 32, 64, 1, 2, 4, 8, 16, 32, 64, 128, 1, 2, 4, 8, 16, 32, 64, 128, 256, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 1, 2, 4, 8, 16, 32, 64, 128, 256, 512, 1024, 2048
Offset: 0

Views

Author

N. J. A. Sloane, Jan 23 2001

Keywords

Comments

Triangular array T(n,k) read by rows, where T(n,k) = i!*j! times coefficient of x^n*y^k in exp(x+2y).
T(n,k) is the number of subsets of {0,1,...,n} whose largest element is k. To see this, let A be any subset of the 2^k subsets of {0,1,...,k-1}. Then there are 2^k subsets of the form (A U {k}). See example below. - Dennis P. Walsh, Nov 27 2011
Sequence B is called a reluctant sequence of sequence A, if B is triangle array read by rows: row number k coincides with first k elements. A059268 is reluctant sequence of sequence A000079. - Boris Putievskiy, Dec 17 2012

Examples

			T(4,3)=8 since there are 8 subsets of {0,1,2,3,4} whose largest element is 3, namely, {3}, {0,3}, {1,3}, {2,3}, {0,1,3}, {0,2,3}, {1,2,3}, and {0,1,2,3}.
Triangle starts:
  1;
  1, 2;
  1, 2, 4;
  1, 2, 4, 8;
  1, 2, 4, 8, 16;
  1, 2, 4, 8, 16, 32;
  ...
		

Crossrefs

Cf. A140531.
Cf. A000079.
Cf. A131816.
Row sums give A126646.

Programs

  • Haskell
    a059268 n k = a059268_tabl !! n !! k
    a059268_row n = a059268_tabl !! n
    a059268_tabl = iterate (scanl (+) 1) [1]
    -- Reinhard Zumkeller, Apr 18 2013, Jul 05 2012
    
  • Maple
    seq(seq(2^k,k=0..n),n=0..10);
  • Mathematica
    Table[2^k, {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Jun 10 2013 *)
  • Python
    from math import isqrt
    def A059268(n):
        a = (m:=isqrt(k:=n+1<<1))-(k<=m*(m+1))
        return 1<>1) # Chai Wah Wu, Feb 24 2025

Formula

E.g.f.: exp(x+2*y) (T coordinates).
a(n) = A018900(n+1) - A140513(n). - Reinhard Zumkeller, Jun 24 2009
T(n,k) = A173786(n-1,k-1) - A173787(n-1,k-1), 0Reinhard Zumkeller, Feb 28 2010
T(n,k) = 2^k. - Reinhard Zumkeller, Jan 29 2010
As a linear array, the sequence is a(n) = 2^(n-1-t*(t+1)/2), where t = floor((-1+sqrt(8*n-7))/2), n>=1. - Boris Putievskiy, Dec 17 2012
As a linear array, the sequence is a(n) = 2^(n-1-t*(t+1)/2), where t = floor(sqrt(2*n)-1/2), n>=1. - Zhining Yang, Jun 09 2017

Extensions

Formula corrected by Reinhard Zumkeller, Feb 23 2010
Showing 1-10 of 19 results. Next