A028399 a(n) = 2^n - 4.
0, 4, 12, 28, 60, 124, 252, 508, 1020, 2044, 4092, 8188, 16380, 32764, 65532, 131068, 262140, 524284, 1048572, 2097148, 4194300, 8388604, 16777212, 33554428, 67108860, 134217724, 268435452, 536870908, 1073741820, 2147483644, 4294967292, 8589934588, 17179869180
Offset: 2
Examples
From _Petros Hadjicostas_, Aug 08 2019: (Start) We have a(3) = 4 because each of the following permutations of [3] has the following so-called "séquences" ("alternate runs"): 123 -> 123 (one), 132 -> 13, 32 (two), 213 -> 21, 13 (two), 231 -> 23, 31 (two), 312 -> 31, 12 (two), 321 -> 321 (one). Recall that a so-called "séquence" ("alternate run") must start with a "maximum" and end with "minimum", or vice versa, and it should not contain any other maxima and minima in between. Two consecutive such "séquences" ("alternate runs") have exactly one minimum or exactly one maximum in common. (End)
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 261.
- A. W. F. Edwards, Cogwheels of the Mind, Johns Hopkins University Press, 2004, p. 82.
Links
- Muniru A Asiru, Table of n, a(n) for n = 2..700
- Désiré André, Sur les permutations alternées, J. Math. Pur. Appl., 7 (1881), 167-184.
- Désiré André, Étude sur les maxima, minima et séquences des permutations, Ann. Sci. Ecole Norm. Sup., 3, no. 1 (1884), 121-135.
- Désiré André, Mémoire sur les permutations quasi-alternées, Journal de mathématiques pures et appliquées 5e série, tome 1 (1895), 315-350.
- Désiré André, Mémoire sur les séquences des permutations circulaires, Bulletin de la S. M. F., tome 23 (1895), pp. 122-184.
- Ali Reza Ashrafi and Parisa Nikzad, Kekulé index and bounds of energy for nanostar dendrimers, Digest J. of Nanomaterials and Biostructures, 4, No. 2, 2009, 383-388.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, Integers: Electronic Journal of Combinatorial Number Theory 4 (2004), A21, 20pp.
- Sergey Kitaev, On multi-avoidance of right angled numbered polyomino patterns, University of Kentucky Research Reports (2004).
- László Németh, Pascal pyramid in the space H^2 x R, arXiv:1701.06022 [math.CO], 2017 (3rd line of Table 2 is a(n+1)).
- I. Strazdins, Universal affine classification of Boolean functions, Acta Applic. Math. 46 (1997), 147-167.
- Index entries for linear recurrences with constant coefficients, signature (3,-2).
Crossrefs
Programs
-
GAP
a:=List([2..40], n->2^n-4); # Muniru A Asiru, May 17 2018
-
Maple
seq(2^n-4, n=2..40); # Muniru A Asiru, May 17 2018
-
Mathematica
2^Range[2,40]-4 (* Harvey P. Dale, Jul 05 2019 *)
-
PARI
a(n)=if(n<2, 0, 2^n-4)
-
Python
def A028399(n): return (1<
Chai Wah Wu, Jun 27 2023
Formula
O.g.f.: 4*x^3/((1-x)*(1-2*x)). - R. J. Mathar, Aug 07 2008
From Reinhard Zumkeller, Feb 28 2010: (Start)
a(n) = A173787(n,2). (End)
a(n) = a(n-1) + 2^(n-1) (with a(2)=0). - Vincenzo Librandi, Nov 22 2010
a(n) = 4*A000225(n-2). - R. J. Mathar, Dec 15 2015
E.g.f.: 3 + 2*x - 4*exp(x) + exp(2*x). - Stefano Spezia, Apr 06 2021
a(n) = sigma(A003945(n-2)) for n>=3. - Flávio V. Fernandes, Apr 20 2021
Extensions
Additional comments from Barbara Haas Margolius (margolius(AT)math.csuohio.edu), Dec 02 2001
Comments