cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A254365 a(n) = 2^(n+2) + 3^n + 10.

Original entry on oeis.org

15, 21, 35, 69, 155, 381, 995, 2709, 7595, 21741, 63155, 185349, 547835, 1627101, 4848515, 14479989, 43308875, 129664461, 388469075, 1164358629, 3490978715, 10468741821, 31397836835, 94176733269, 282496645355, 847422827181, 2542134263795, 7626134355909
Offset: 0

Views

Author

Luciano Ancora, Jan 29 2015

Keywords

Comments

This is the sequence of third terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[2^(n+2) + 3^n + 10, {n, 0, 30}] (* Bruno Berselli, Jan 30 2015 *)
  • PARI
    vector(30, n, n--; 2^(n+2) + 3^n + 10) \\ Colin Barker, Jan 30 2015

Formula

G.f.: -(74*x^2-69*x+15) / ((x-1)*(2*x-1)*(3*x-1)). - Colin Barker, Jan 30 2015
a(n) = 6*a(n-1)-11*a(n-2)+6*a(n-3). - Colin Barker, Jan 30 2015

A254367 a(n) = 5*2^(n+2) + 2^(2n+2) + 10*3^n + 5^n + 35.

Original entry on oeis.org

70, 126, 294, 846, 2814, 10326, 40614, 168126, 723534, 3208806, 14570934, 67417806, 316645854, 1505245686, 7225414854, 34956689886, 170199537774, 832952952966, 4093454620374, 20184631056366, 99800366967294, 494533989722646, 2454868429675494
Offset: 0

Views

Author

Luciano Ancora, Jan 30 2015

Keywords

Comments

This is the sequence of fifth terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Magma
    [5*2^(n+2)+2^(2*n+2)+10*3^n+5^n+35: n in [0..30]]; // Vincenzo Librandi, Feb 02 2015
  • Mathematica
    Table[5 2^(n + 2) + 2^(2 n + 2) + 10 3^n + 5^n + 35, {n, 0, 30}] (* Vincenzo Librandi, Feb 02 2015 *)
  • PARI
    vector(30, n, n--; 5*2^(n+2) + 2^(2*n+2) + 10*3^n + 5^n + 35) \\ Colin Barker, Jan 30 2015
    

Formula

a(n) = 15*a(n-1)-85*a(n-2)+225*a(n-3)-274*a(n-4)+120*a(n-5). - Colin Barker, Jan 30 2015
G.f.: -2*(2972*x^4-4302*x^3+2177*x^2-462*x+35) / ((x-1)*(2*x-1)*(3*x-1)*(4*x-1)*(5*x-1)). - Colin Barker, Jan 30 2015

A254465 a(n) = 35*2^n + 10*4^n + 20*3^n + 4*5^n + 6^n + 56.

Original entry on oeis.org

126, 252, 672, 2232, 8592, 36552, 166992, 804552, 4037712, 20923272, 111231312, 603667272, 3331889232, 18646768392, 105558814032, 603280840392, 3475274371152, 20152803339912, 117513698083152, 688425727971912, 4048693055291472, 23888489018765832, 141334996634766672, 838119509472869832
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of sixth terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[35 2^n + 10 4^n + 20 3^n + 4 5^n + 6^n + 56, {n, 0, 24}] (* Michael De Vlieger, Jan 31 2015 *)
    LinearRecurrence[{21,-175,735,-1624,1764,-720},{126,252,672,2232,8592,36552},30] (* Harvey P. Dale, Aug 02 2024 *)
  • PARI
    vector(30, n, n--; 35*2^n + 10*4^n + 20*3^n + 4*5^n + 6^n + 56) \\ Colin Barker, Jan 31 2015

Formula

G.f.: -6*(10036*x^5 -16454*x^4 +10065*x^3 -2905*x^2 +399*x -21) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)). - Colin Barker, Jan 31 2015
a(n) = 21*a(n-1)-175*a(n-2)+735*a(n-3)-1624*a(n-4)+1764*a(n-5)-720*a(n-6). - Colin Barker, Jan 31 2015

A254466 a(n) = 56*2^n + 20*4^n + 35*3^n + 4*6^n + 10*5^n + 7^n + 84.

Original entry on oeis.org

210, 462, 1386, 5214, 22770, 110022, 571626, 3136014, 17944290, 106156182, 645091866, 4006997214, 25344197010, 162737255142, 1058251916106, 6955456112814, 46130658756930, 308314670926902, 2074188361172346, 14032607275346814, 95392686703000050
Offset: 0

Views

Author

Luciano Ancora, Jan 31 2015

Keywords

Comments

This is the sequence of seventh terms of "fourth partial sums of m-th powers".

Crossrefs

Programs

  • Mathematica
    Table[56 2^n + 20 4^n + 35 3^n + 4 6^n + 10 5^n + 7^n + 84, {n, 0, 24}] (* Michael De Vlieger, Jan 31 2015 *)
  • PARI
    vector(30, n, n--; 56*2^n + 20*4^n + 35*3^n + 4*6^n + 10*5^n + 7^n + 84) \\ Colin Barker, Jan 31 2015

Formula

G.f.: -6*(110440*x^6 -199272*x^5 +139840*x^4 -49405*x^3 +9345*x^2 -903*x +35) / ((x -1)*(2*x -1)*(3*x -1)*(4*x -1)*(5*x -1)*(6*x -1)*(7*x -1)). - Colin Barker, Jan 31 2015
a(n) = 28*a(n-1) -322*a(n-2) +1960*a(n-3) -6769*a(n-4) +13132*a(n-5) -13068*a(n-6) +5040*a(n-7). - Colin Barker, Jan 31 2015
Showing 1-4 of 4 results.