A214015
Number of permutations A(n,k) in S_n with longest increasing subsequence of length <= k; square array A(n,k), n>=0, k>=0, read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 2, 5, 1, 0, 1, 1, 2, 6, 14, 1, 0, 1, 1, 2, 6, 23, 42, 1, 0, 1, 1, 2, 6, 24, 103, 132, 1, 0, 1, 1, 2, 6, 24, 119, 513, 429, 1, 0, 1, 1, 2, 6, 24, 120, 694, 2761, 1430, 1, 0, 1, 1, 2, 6, 24, 120, 719, 4582, 15767, 4862, 1, 0
Offset: 0
A(4,2) = 14 because 14 permutations of {1,2,3,4} do not contain an increasing subsequence of length > 2: 1432, 2143, 2413, 2431, 3142, 3214, 3241, 3412, 3421, 4132, 4213, 4231, 4312, 4321. Permutation 1423 is not counted because it contains the noncontiguous increasing subsequence 123.
A(4,2) = 14 = 2^2 + 3^2 + 1^2 because the partitions of 4 with <= 2 parts are [2,2], [3,1], [4] with 2, 3, 1 standard Young tableaux, respectively:
+------+ +------+ +---------+ +---------+ +---------+ +------------+
| 1 3 | | 1 2 | | 1 3 4 | | 1 2 4 | | 1 2 3 | | 1 2 3 4 |
| 2 4 | | 3 4 | | 2 .-----+ | 3 .-----+ | 4 .-----+ +------------+
+------+ +------+ +---+ +---+ +---+
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 1, 5, 6, 6, 6, 6, 6, ...
0, 1, 14, 23, 24, 24, 24, 24, ...
0, 1, 42, 103, 119, 120, 120, 120, ...
0, 1, 132, 513, 694, 719, 720, 720, ...
0, 1, 429, 2761, 4582, 5003, 5039, 5040, ...
Columns k=0-10 give:
A000007,
A000012,
A000108,
A005802,
A047889,
A047890,
A052399,
A072131,
A072132,
A072133,
A072167.
A(2n,n-1) gives
A269042(n) for n>0.
-
h:= proc(l) local n; n:=nops(l); add(i, i=l)! /mul(mul(1+l[i]-j
+add(`if`(l[k]>=j, 1, 0), k=i+1..n), j=1..l[i]), i=1..n)
end:
g:= (n, i, l)-> `if`(n=0 or i=1, h([l[], 1$n])^2, `if`(i<1, 0,
add(g(n-i*j, i-1, [l[], i$j]), j=0..n/i))):
A:= (n, k)-> `if`(k>=n, n!, g(n, k, [])):
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
h[l_] := With[{n = Length[l]}, Sum[i, {i, l}]! / Product[Product[1+l[[i]]-j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, l_] := If[n == 0 || i == 1, h[Join[l, Array[1&, n]]]^2, If[i < 1, 0, Sum[g[n - i*j, i-1, Join[l, Array[i&, j]]], {j, 0, n/i}]]];
A[n_, k_] := If[k >= n, n!, g[n, k, {}]];
Table [Table [A[n, d-n], {n, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, Dec 09 2013, translated from Maple *)
A306100
Square array T(n,k) = number of plane partitions of n with parts colored in (at most) k colors; n >= 0, k >= 0; read by antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 2, 3, 0, 1, 3, 10, 6, 0, 1, 4, 21, 34, 13, 0, 1, 5, 36, 102, 122, 24, 0, 1, 6, 55, 228, 525, 378, 48, 0, 1, 7, 78, 430, 1540, 2334, 1242, 86, 0, 1, 8, 105, 726, 3605, 8964, 11100, 3690, 160, 0, 1, 9, 136, 1134, 7278, 25980, 56292, 47496, 11266, 282, 0
Offset: 0
The array starts:
[1 1 1 1 1 1 ...] = A000012
[0 1 2 3 4 5 ...] = A001477
[0 3 10 21 36 55 ...] = A014105
[0 6 34 102 228 430 ...] = A067389
[0 13 122 525 1540 3605 ...]
[0 24 378 2334 8964 25980 ...]
[0 48 1242 11100 56292 203280 ...]
A306093
Number of plane partitions of n where parts are colored in 3 colors.
Original entry on oeis.org
1, 3, 21, 102, 525, 2334, 11100, 47496, 210756, 886080, 3759114, 15378051, 63685767, 255417357, 1030081827, 4078689249, 16150234665, 62991117084, 245948154087, 947944122906, 3653360869998, 13946363438502, 53149517598207, 200994216333375, 759191650345380
Offset: 0
For n = 1, there is only the partition [1], which can be colored in any of the three colors, whence a(1) = 3.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 3 + 9 + 9 = 21 distinct possibilities.
-
a(n)=sum(k=1,n,A091298(n,k)*3^k,!n)
A306099
Number of plane partitions of n where parts are colored in 2 colors.
Original entry on oeis.org
1, 2, 10, 34, 122, 378, 1242, 3690, 11266, 32666, 94994, 267202, 754546, 2072578, 5691514, 15364290, 41321962, 109634586, 290048746, 758630698, 1977954706, 5111900410, 13161995010, 33645284962, 85727394018, 217042978882, 547750831210, 1375147078146, 3441516792442
Offset: 0
For n = 1, there is only the partition [1], which can be colored in any of the two colors, whence a(1) = 2.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 2 + 4 + 4 = 10 distinct possibilities.
A306101
Square array T(n,k) = number of plane partitions of n with parts colored in (at most) k colors; n, k >= 1; read by antidiagonals.
Original entry on oeis.org
1, 2, 3, 3, 10, 6, 4, 21, 34, 13, 5, 36, 102, 122, 24, 6, 55, 228, 525, 378, 48, 7, 78, 430, 1540, 2334, 1242, 86, 8, 105, 726, 3605, 8964, 11100, 3690, 160, 9, 136, 1134, 7278, 25980, 56292, 47496, 11266, 282, 10, 171, 1672, 13237, 62574, 203280, 316388, 210756, 32666, 500, 11, 210, 2358, 22280, 132258, 586878, 1417530
Offset: 1
The array starts:
[ 1 2 3 4 5 ...] = A000027
[ 3 10 21 36 55 ...] = A014105
[ 6 34 102 228 430 ...] = A067389
[ 13 122 525 1540 3605 ...]
[ 24 378 2334 8964 25980 ...]
[ 48 1242 11100 56292 203280 ...]
A000219 A306099 A306093 A306094 A306094
For concrete examples, see A306099 and A306093.
A306094
Number of plane partitions of n where parts are colored in (at most) 4 colors.
Original entry on oeis.org
1, 4, 36, 228, 1540, 8964, 56292, 316388, 1857028, 10301892, 57884132, 312915172, 1720407492, 9132560068, 48898964964, 256790538660, 1350883911620, 6992031608260, 36296271612324, 185785685287076, 952221494828996, 4831039856692356, 24489621255994276
Offset: 0
For n = 1, there is only the partition [1], which can be colored in any of the four colors, whence a(1) = 4.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 4 + 16 + 16 = 36 distinct possibilities.
A306095
Number of plane partitions of n where parts are colored in (at most) 5 colors.
Original entry on oeis.org
1, 5, 55, 430, 3605, 25980, 203280, 1417530, 10373080, 71595830, 501688880, 3376856755, 23181027055, 153326091805, 1024829902855, 6713038952355, 44092634675905, 284723995000530, 1845944380173205, 11791816763005330, 75485171060740630, 478105767714603130
Offset: 0
For n = 1, there is only the partition [1], which can be colored in any of the five colors, whence a(1) = 5.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 5 + 25 + 25 = 55 distinct possibilities.
A306096
Number of plane partitions of n where parts are colored in (at most) 6 colors.
Original entry on oeis.org
1, 6, 78, 726, 7278, 62574, 586878, 4889166, 42892710, 354335982, 2976581670, 23990771094, 197564663094, 1565310230790, 12548473437822, 98526949264374, 776195574339102, 6008457242324814, 46729763436714126, 357901583160822990, 2748384845416097718
Offset: 0
For n = 1, there is only the partition [1], which can be colored in any of the six colors, whence a(1) = 6.
For n = 2, there are the partitions [2], [1,1] and [1;1]. Adding colors, this yields a(2) = 6 + 36 + 36 = 78 distinct possibilities.
-
a(n)=sum(k=1,n,A091298(n,k)*6^k,!n)
A129627
Sum of the 4th powers of the degrees of irreducible representations of S_n, the symmetric group on n letters.
Original entry on oeis.org
1, 2, 18, 180, 3060, 101160, 3807720, 174986280, 10699554600, 927701102160, 95030461809360, 10905467528783520, 1431935974242053280, 222906109589537774400, 42471495822490670295360, 9447237366839585591438160, 2329156499421828313498781520
Offset: 1
-
List([1..20],n->Sum(List(Irr(CharacterTable("Symmetric",n)), x->x[1]^4)));
-
h[l_] := With[{n=Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, k_, l_] := g[n, i, l, k] = If[n == 0, h[l]^k, If[i < 1, 0, g[n, i - 1, k, l] + If[i > n, 0, g[n - i, i, k, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, 4, {}]];
Table[a[n], {n, 1, 20}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
A130721
Sum of the cubes of the number of standard Young tableaux over all partitions of n.
Original entry on oeis.org
1, 1, 2, 10, 64, 596, 8056, 130432, 2534960, 59822884, 1718480368, 56754444440, 2110577206816, 87981286785328, 4129351961475872, 218382856010529472, 12813477368159567200, 822337333595479929044, 57213666993723455063392, 4305630141314873304140008
Offset: 0
a(4) = 1^3 + 3^3 + 2^3 + 3^3 + 1^3 because the five partitions of 4 (namely 4, 3+1, 2+2, 2+1+1, 1+1+1+1) have respectively 1, 3, 2, 3, 1 standard Young tableaux.
-
h[l_] := With[{n=Length[l]}, Sum[i, {i, l}]!/Product[Product[1 + l[[i]] - j + Sum[If[l[[k]] >= j, 1, 0], {k, i+1, n}], {j, 1, l[[i]]}], {i, 1, n}]];
g[n_, i_, k_, l_] := g[n, i, l, k] = If[n == 0, h[l]^k, If[i < 1, 0, g[n, i - 1, k, l] + If[i > n, 0, g[n - i, i, k, Append[l, i]]]]];
a[n_] := If[n == 0, 1, g[n, n, 3, {}]];
Table[a[n], {n, 0, 20}] (* Jean-François Alcover, May 18 2017, after Alois P. Heinz *)
Showing 1-10 of 17 results.
Comments