cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A066183 Total sum of squares of parts in all partitions of n.

Original entry on oeis.org

1, 6, 17, 44, 87, 180, 311, 558, 910, 1494, 2302, 3608, 5343, 7986, 11554, 16714, 23549, 33270, 45942, 63506, 86338, 117156, 156899, 209926, 277520, 366260, 479012, 624956, 808935, 1044994, 1340364, 1715572, 2182935, 2770942, 3499379
Offset: 1

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of hook lengths of all boxes in the Ferrers diagrams of all partitions of n (see the Guo-Niu Han paper, p. 25, Corollary 6.5). Example: a(3) = 17 because for the partitions (3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1}, {3,2,1}, respectively; the total sum of all hook lengths is 6+5+6 = 17. - Emeric Deutsch, May 15 2008
Partial sums of A206440. - Omar E. Pol, Feb 08 2012
Column k=2 of A213191. - Alois P. Heinz, Sep 20 2013
Row sums of triangles A180681, A206561 and A299768. - Omar E. Pol, Mar 20 2018

Examples

			a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i>n then b(n, i-1)
        else g:= b(n, i-1); h:= b(n-i, i);
             [g[1]+h[1], g[2]+h[2] +h[1]*i^2]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 23 2012
    # second Maple program:
    g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] :=  b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
  • PARI
    a(n)=my(s); forpart(v=n,s+=sum(i=1,#v,v[i]^2));s \\ Charles R Greathouse IV, Aug 31 2015
    
  • PARI
    a(n)=sum(k=1,n,sigma(k,2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015

Formula

a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k>=0} k*A265245(n,k). - Emeric Deutsch, Dec 06 2015
G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - Vaclav Kotesovec, May 28 2018

Extensions

More terms from Naohiro Nomoto, Feb 07 2002

A213180 Sum over all partitions lambda of n of Sum_{p:lambda} p^m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.

Original entry on oeis.org

0, 1, 3, 7, 16, 28, 59, 91, 170, 269, 450, 655, 1162, 1602, 2527, 3793, 5805, 8034, 12660, 17131, 26484, 37384, 53738, 73504, 114683, 153613, 221225, 313339, 453769, 609179, 927968, 1223909, 1804710, 2522264, 3539835, 4855420, 7439870, 9765555, 14009545
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2013

Keywords

Examples

			a(6) = 59: (1^6) + (2+1^4) + (2^2+1^2) + (2^3) + (3+1^3) + (3+2+1) + (3^2) + (4+1^2) + (4+2) + (5+1) + (6) = 1+3+5+8+4+6+9+5+6+6+6 = 59.
		

Crossrefs

Cf. A000070 (Sum 1), A006128 (Sum m), A014153 (Sum p), A024786 (Sum floor(1/m)), A066183 (Sum p^2*m), A066186 (Sum p*m), A073336 (Sum floor(m/p)), A116646 (Sum delta(m,2)), A117524 (Sum delta(m,3)), A103628 (Sum delta(m,1)*p), A117525 (Sum delta(m,2)*p), A197126, A213191.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^m]))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n==0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m==0, l, l+{0, l[[1]]*p^m}]][b[n-p*m, p-1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

From Vaclav Kotesovec, May 24 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 5.0144820680945600131204662934686439430547... if mod(n,3)=0
c = 4.6144523178014379613985400559486878971522... if mod(n,3)=1
c = 4.5237761454818383598444208605033385016299... if mod(n,3)=2
(End)

A229325 Total sum of cubes of parts in all partitions of n.

Original entry on oeis.org

0, 1, 10, 39, 122, 287, 660, 1281, 2486, 4392, 7686, 12628, 20790, 32471, 50694, 76560, 115038, 168333, 245784, 350896, 499620, 699468, 975150, 1341077, 1838550, 2490092, 3361260, 4494084, 5986750, 7909231, 10416300, 13616768, 17745948, 22983345, 29672974
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of cubes of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^3}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=3 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^3])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    Table[Total[Flatten[IntegerPartitions[n]^3]],{n,0,40}] (* Harvey P. Dale, May 01 2016 *)
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], Function[{g, h}, g + h + {0, h[[1]]*i^3}][b[n, i-1], b[n-i, i]]]]];
    a[n_] := b[n, n][[2]];
    Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 30 2016, after Alois P. Heinz *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^3.
G.f.: g(x) = (Sum_{k>=1} k^3*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n. - Vaclav Kotesovec, May 28 2018

A229332 Total sum of 10th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 1026, 60077, 1110704, 10936407, 72573360, 365983991, 1513288698, 5365004410, 16877063274, 48105808222, 126584890148, 310963328163, 721354362186, 1590587613754, 3359058693214, 6822189191429, 13396265918970, 25501949210562, 47248199227946, 85355336473378
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 10th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^10}*x^k). The g.f. g given in the Formula section was obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
In general, column k>0 of A213191 is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 28 2018

Crossrefs

Column k=10 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^10])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^10*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^10, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{j=k..n} A066633(n,k) * k^10.
G.f.: g(x) = (Sum_{k>=1} k^10*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 7054387200*sqrt(2)*Zeta(11)/Pi^11 * exp(Pi*sqrt(2*n/3)) * n^(9/2). - Vaclav Kotesovec, May 28 2018

A252761 Total sum of n-th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 6, 39, 392, 4775, 73920, 1323441, 27530298, 644749920, 16877063274, 486936848068, 15373069624220, 526779275391863, 19477946814752586, 772859962684631760, 32758854443379036238, 1477205045259973740909, 70613293111837146235770, 3566735926987461858837256
Offset: 0

Views

Author

Alois P. Heinz, Dec 21 2014

Keywords

Crossrefs

Main diagonal of A213191.
Cf. A066633.

Programs

  • Maple
    b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
              (b(n-p*m, p-1, k)), m=0..n/p)))
        end:
    a:= n-> b(n$3)[2]:
    seq(a(n), n=0..20);
  • Mathematica
    b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[ Function[l, If[m == 0, l, l + {0, l[[1]]*p^k*m}]][b[n - p*m, p - 1, k]], {m, 0, n/p}]]]; a[n_] := b[n, n, n][[2]]; Table[a[n], {n, 0, 20}] (* Jean-François Alcover, Feb 07 2017, translated from Maple *)

Formula

a(n) = Sum_{j=1..n} A066633(n,j) * j^n.
a(n) ~ c * n^n, where c = 1/QPochhammer(exp(-1)) = 1.98244090741287370368568246556131201568288277843252568635840026086375046496... - Vaclav Kotesovec, May 28 2018, updated Jul 21 2018

A229326 Total sum of 4th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 18, 101, 392, 1119, 2904, 6407, 13578, 26218, 49218, 86782, 150860, 249723, 408810, 647170, 1013278, 1545029, 2337738, 3460218, 5086658, 7350874, 10549872, 14929931, 21009874, 29205500, 40385036, 55289000, 75309056, 101692923, 136710130, 182377824
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 4th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^4}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015
Convolution of A001159 and A000041. - Vaclav Kotesovec, May 28 2018

Crossrefs

Column k=4 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^4])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^4*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n-k, k] + PartitionsP[n-k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^4, {k, 1, n}]; Array[a, 32, 0] (* Jean-François Alcover, Dec 15 2016 *)
    Table[Sum[DivisorSigma[4, k]*PartitionsP[n-k], {k, 1, n}], {n, 0, 40}] (* Vaclav Kotesovec, May 27 2018 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^4.
G.f.: g(x) = (Sum_{k>=1} k^4*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 216*sqrt(2)*Zeta(5)/Pi^5 * exp(Pi*sqrt(2*n/3)) * n^(3/2). - Vaclav Kotesovec, May 28 2018

A229327 Total sum of 5th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 34, 279, 1370, 4775, 14196, 35745, 83486, 177120, 358710, 681316, 1257414, 2212343, 3811590, 6344760, 10381686, 16534989, 25994160, 39973360, 60802860, 90875412, 134507694, 196208405, 283895550, 405646460, 575437476, 807778980, 1126478494, 1556675935
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 5th powers the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^5}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=5 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^5])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^5*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    Table[Total[Flatten[IntegerPartitions[n]]^5],{n,0,30}] (* Harvey P. Dale, Jun 24 2014 *)
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; a[n_] := Sum[T[n, k]*k^5, {k, 1, n}]; Array[a, 45, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^5.
G.f.: g(x) = (Sum_{k>=1} k^5*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 16*sqrt(3)/7 * exp(Pi*sqrt(2*n/3)) * n^2. - Vaclav Kotesovec, May 28 2018

A229328 Total sum of 6th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 66, 797, 5024, 21447, 73920, 212951, 552378, 1292410, 2838234, 5823262, 11464628, 21488403, 39094986, 68600554, 117628414, 196085189, 321067770, 513857202, 810429626, 1254814258, 1918760856, 2889290459, 4305268546, 6331543700, 9226796660, 13297146272
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 6th powers the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^6}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=6 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^6])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^6*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^6, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^6.
G.f.: g(x) = (Sum_{k>=1} k^6*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 38880*sqrt(2)*Zeta(7)/Pi^7 * exp(Pi*sqrt(2*n/3)) * n^(5/2). - Vaclav Kotesovec, May 28 2018

A229329 Total sum of 7th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 130, 2319, 18962, 99407, 400620, 1323441, 3835406, 9924912, 23736846, 52729348, 111173790, 222415631, 428578374, 794363760, 1430855958, 2500747293, 4274146464, 7130355736, 11681752260, 18764913468, 29690460150, 46211761397, 71016916110, 107622522692
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 7th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^7}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=7 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^7])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^7*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^7, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^7.
G.f.: g(x) = (Sum_{k>=1} k^7*x^k/(1-x^k))/Product_{q>=1}(1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 288*sqrt(3)/5 * exp(Pi*sqrt(2*n/3)) * n^3. - Vaclav Kotesovec, May 28 2018

A229330 Total sum of 8th powers of parts in all partitions of n.

Original entry on oeis.org

0, 1, 258, 6821, 72872, 470319, 2229624, 8464487, 27530298, 78974938, 206418978, 497450302, 1126668140, 2410089243, 4930872330, 9670306930, 18336637198, 33650085029, 60146112858, 104730757818, 178524931538, 297898015114, 488407670832, 786658901771
Offset: 0

Views

Author

Alois P. Heinz, Sep 20 2013

Keywords

Comments

The bivariate g.f. for the partition statistic "sum of 8th powers of the parts" is G(t,x) = 1/Product_{k>=1}(1 - t^{k^8}*x^k). The g.f. g at the Formula section has been obtained by evaluating dG/dt at t=1. - Emeric Deutsch, Dec 06 2015

Crossrefs

Column k=8 of A213191.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0, [1, 0],
          `if`(i<1, [0, 0], `if`(i>n, b(n, i-1),
          ((g, h)-> g+h+[0, h[1]*i^8])(b(n, i-1), b(n-i, i)))))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
    # second Maple program:
    g := (sum(k^8*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k < n := T[n, k] = T[n - k, k] + PartitionsP[n - k]; T[, ] = 0; a[n_] := Sum[T[n, k]*k^8, {k, 1, n}]; Array[a, 40, 0] (* Jean-François Alcover, Dec 15 2016 *)

Formula

a(n) = Sum_{k=1..n} A066633(n,k) * k^8.
G.f.: g(x) = (Sum_{k>=1} k^8*x^k/(1-x^k))/Product_{q>=1}(1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 13063680*sqrt(2)*Zeta(9)/Pi^9 * exp(Pi*sqrt(2*n/3)) * n^(7/2). - Vaclav Kotesovec, May 28 2018
Showing 1-10 of 19 results. Next