cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 14 results. Next

A138785 Triangle read by rows: T(n,k) is the number of hook lengths equal to k among all hook lengths of all partitions of n (1 <= k <= n).

Original entry on oeis.org

1, 2, 2, 4, 2, 3, 7, 6, 3, 4, 12, 8, 6, 4, 5, 19, 16, 12, 8, 5, 6, 30, 22, 18, 12, 10, 6, 7, 45, 38, 27, 24, 15, 12, 7, 8, 67, 52, 45, 32, 25, 18, 14, 8, 9, 97, 82, 63, 52, 40, 30, 21, 16, 9, 10, 139, 112, 93, 72, 60, 42, 35, 24, 18, 10, 11, 195, 166, 135, 112, 85, 72, 49, 40, 27, 20, 11, 12
Offset: 1

Views

Author

Emeric Deutsch, May 16 2008

Keywords

Comments

T(n,k) is also the sum of all parts of size k in all partitions of n. - Omar E. Pol, Feb 24 2012
T(n,k) is also the sum of all k's that are divisors of all positive integers in a sequence with n blocks where the m-th block consists of A000041(n-m) copies of m, with 1 <= m <= n. - Omar E. Pol, Feb 05 2021

Examples

			T(4,2) = 6 because for the partitions (4), (3,1), (2,2), (2,1,1), (1,1,1,1) of n=4 the hook length multi-sets are {4,3,2,1}, {4,2,1,1}, {3,2,2,1}, {4,1,2,1}, {4,3,2,1}, respectively, containing altogether six 2's.
Triangle starts:
   1;
   2,  2;
   4,  2,  3;
   7,  6,  3,  4;
  12,  8,  6,  4,  5;
  19, 16, 12,  8,  5,  6;
  30, 22, 18, 12, 10,  6,  7;
  45, 38, 27, 24, 15, 12,  7,  8;
  67, 52, 45, 32, 25, 18, 14,  8, 9;
  97, 82, 63, 52, 40, 30, 21, 16, 9, 10;
		

Crossrefs

Row sums yield A066186.

Programs

  • Maple
    g:=sum(k*x^k*t^k/((1-x^k)*(product(1-x^m,m=1..50))),k=1..50): gser:= simplify(series(g,x=0,15)): for n to 12 do P[n]:= sort(coeff(gser,x,n)) end do: for n to 12 do seq(coeff(P[n],t,j),j=1..n) end do; # yields sequence in triangular form
    # second program:
    b:= proc(n, i) option remember; `if`(n=0, [1],
         `if`(i=1, [1, n], (p-> (g-> p(p(b(n, i-1), g),
          [0$i, g[1]]))(`if`(i>n, [0], b(n-i, i))))(
          (f, g)-> zip((x, y)-> x+y, f, g, 0))))
        end:
    T:= n-> (l-> seq(l[i+1]*i, i=1..n))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 22 2012
  • Mathematica
    max = 12; s = Series[Sum[k*t^k*x^k/((1 - x^k)*Product[1 - x^m, {m, 1, max}]), {k, 1, max}] , {x, 0, max}, {t, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[s, {x, 0, n}, {t, 0, k}]; Table[t[n, k], {n, 1, max}, {k, 1, n}] // Flatten (* Jean-François Alcover, Jan 17 2014 *)
    Table[Count[Flatten@IntegerPartitions@n, k]*k, {n, 12}, {k, n}] // Flatten (* Robert Price, Jun 15 2020 *)

Formula

T(n,1) = A000070(n-1).
Sum_{k=1..n} k*T(n,k) = A066183(n).
G.f.: Sum(k*t^k*x^k/[(1-x^k)*Product(1-x^m, m=1..infinity)], k=1..infinity).
T(n,k) = k*A066633(n,k).
T(n,k) = Sum_{j=1..n} A207383(j,k). - Omar E. Pol, May 02 2012

A213191 Total sum A(n,k) of k-th powers of parts in all partitions of n; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

0, 0, 1, 0, 1, 3, 0, 1, 4, 6, 0, 1, 6, 9, 12, 0, 1, 10, 17, 20, 20, 0, 1, 18, 39, 44, 35, 35, 0, 1, 34, 101, 122, 87, 66, 54, 0, 1, 66, 279, 392, 287, 180, 105, 86, 0, 1, 130, 797, 1370, 1119, 660, 311, 176, 128, 0, 1, 258, 2319, 5024, 4775, 2904, 1281, 558, 270, 192
Offset: 0

Views

Author

Alois P. Heinz, Feb 28 2013

Keywords

Comments

In general, if k > 0 then column k is asymptotic to 2^((k-3)/2) * 3^(k/2) * k! * Zeta(k+1) / Pi^(k+1) * exp(Pi*sqrt(2*n/3)) * n^((k-1)/2). - Vaclav Kotesovec, May 27 2018

Examples

			Square array A(n,k) begins:
:   0,  0,   0,   0,    0,     0,     0, ...
:   1,  1,   1,   1,    1,     1,     1, ...
:   3,  4,   6,  10,   18,    34,    66, ...
:   6,  9,  17,  39,  101,   279,   797, ...
:  12, 20,  44, 122,  392,  1370,  5024, ...
:  20, 35,  87, 287, 1119,  4775, 21447, ...
:  35, 66, 180, 660, 2904, 14196, 73920, ...
		

Crossrefs

Programs

  • Maple
    b:= proc(n, p, k) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^k*m]))
              (b(n-p*m, p-1, k)), m=0..n/p)))
        end:
    A:= (n, k)-> b(n, n, k)[2]:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, p_, k_] := b[n, p, k] = If[n == 0, {1, 0}, If[p < 1, {0, 0}, Sum[Function[l, If[m == 0, l, l + {0, First[l]*p^k*m}]][b[n - p*m, p - 1, k]], { m, 0, n/p}]]] ; a[n_, k_] := b[n, n, k][[2]]; Table[Table[a[n, d - n], {n, 0, d}], {d, 0, 10}] // Flatten (* Jean-François Alcover, Dec 12 2013, translated from Maple *)
    (* T = A066633 *) T[n_, n_] = 1; T[n_, k_] /; k, ] = 0; A[n_, k_] := Sum[T[n, j]*j^k, {j, 1, n}]; Table[A[n-k, k], {n, 0, 10}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Dec 15 2016 *)

Formula

A(n,k) = Sum_{j=1..n} A066633(n,j) * j^k.

A206561 Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 20, 13, 7, 4, 35, 23, 15, 9, 5, 66, 47, 31, 19, 11, 6, 105, 75, 53, 35, 23, 13, 7, 176, 131, 93, 66, 42, 27, 15, 8, 270, 203, 151, 106, 74, 49, 31, 17, 9, 420, 323, 241, 178, 126, 86, 56, 35, 19, 10, 616, 477, 365, 272, 200, 140, 98, 63, 39, 21, 11
Offset: 1

Views

Author

Omar E. Pol, Feb 14 2012

Keywords

Comments

From Omar E. Pol, Mar 18 2018: (Start)
In the n-th row of the triangle the first differences together with its last term give the n-th row of triangle A138785 (see below):
Row..........: 1 2 3 4 5 ...
--- ---- ------- ------------ ----------------
This triangle: 1; 4, 2; 9, 5, 3; 20, 13, 7, 4; 35, 23, 15, 9, 5; ...
| | /| | /| /| | / | /| /| | / | / | /| /|
| |/ | |/ |/ | |/ |/ |/ | |/ |/ |/ |/ |
A138785......: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; ... (End)

Examples

			Triangle begins:
    1;
    4,  2;
    9,  5,  3;
   20, 13,  7,  4;
   35, 23, 15,  9,  5;
   66, 47, 31, 19, 11,  6;
  105, 75, 53, 35, 23, 13,  7;
  ...
		

Crossrefs

Columns 1-2 give A066186, A194552.
Right border gives A000027.
Row sums give A066183. - Omar E. Pol, Mar 19 2018
Both A180681 and A299768 have the same row sums as this triangle. - Omar E. Pol, Mar 21 2018

Programs

  • Mathematica
    Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Mar 19 2018 *)

Formula

T(n,n) = n, T(n,k) = T(n,k+1) + k * A066633(n,k) for k < n.
T(n,k) = Sum_{i=k..n} A138785(n,i).

Extensions

More terms from Alois P. Heinz, Feb 14 2012

A180681 T(n,k) is the sum of the hook lengths over the partitions of n with exactly k parts.

Original entry on oeis.org

1, 3, 3, 6, 5, 6, 10, 16, 8, 10, 15, 23, 22, 12, 15, 21, 47, 44, 30, 17, 21, 28, 62, 74, 56, 40, 23, 28, 36, 104, 115, 114, 71, 52, 30, 36, 45, 130, 196, 162, 139, 89, 66, 38, 45, 55, 195, 268, 286, 227, 169, 110, 82, 47, 55, 66, 235, 395, 407, 369, 269, 204, 134, 100, 57, 66
Offset: 1

Views

Author

Wouter Meeussen, Sep 16 2010

Keywords

Comments

Row sums equal A066183 ('Total sum of squares of parts in all partitions of n').
From Omar E. Pol, Mar 20 2018: (Start)
Both column 1 and leading diagonal give A000217, n >= 1.
Both A206561 and A299768 have the same row sums as this triangle.
Apparently the second diagonal gives A133263 without the first term. (End)

Examples

			T(5,3) = 22 since the partitions of 5 in 3 parts are 221 and 311, with hook lengths {{2,4}, {1,3}, {1}} and {{1,2,5}, {2}, {1}} summing to 22.
Triangle T(n,k) begins:
   1;
   3,   3;
   6,   5,   6;
  10,  16,   8,  10;
  15,  23,  22,  12,  15;
  21,  47,  44,  30,  17,  21;
  28,  62,  74,  56,  40,  23,  28;
  36, 104, 115, 114,  71,  52,  30, 36;
  45, 130, 196, 162, 139,  89,  66, 38, 45;
  55, 195, 268, 286, 227, 169, 110, 82, 47, 55;
		

Crossrefs

T(2n-1,n) gives A301499.

Programs

  • Maple
    f:= n-> (n-1)*n/2:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
          b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
        end:
    T:= (n, k)-> (p-> p[1]*(n+f(k))+p[2])(b(n-k, min(n-k, k))):
    seq(seq(T(n, k), k=1..n), n=1..14);  # Alois P. Heinz, Mar 20 2018
  • Mathematica
    (*Needs["DiscreteMath`Combinatorica`"]; hooklength[(p_)?PartitionQ] := Block[{ferr = (PadLeft[1 + 0*Range[ #1], Max[p]] & ) /@ p}, DeleteCases[(Rest[FoldList[Plus, 0, #1]] & ) /@ ferr + Reverse /@ Reverse[Transpose[(Rest[FoldList[Plus, 0, #1]] & ) /@ Reverse[Reverse /@ Transpose[ferr]]]], 0, {2}] - 1]; partitionexact[n_, m_] := TransposePartition /@ (Prepend[ #1, m] & ) /@ Partitions[n - m, m] *); Table[Tr[ Tr[ Flatten[hooklength[ # ]]] &/@ partitionexact[n,k] ] ,{n,16},{k,n}]
    (* Second program: *)
    Table[p = IntegerPartitions[n, {k}]; Total@Table[y = Table[Boole[p[[l]][[i]] >= j], {i, k}, {j, n}]; Total[Table[Total[{y[[i, j ;; n]], y[[i + 1 ;; k, j]]}, 2], {i, k}, {j, n}], 2], {l, Length[p]}], {n, 11}, {k, n}] // Flatten (* Robert Price, Jun 19 2020 *)
    f[n_] := n(n-1)/2;
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
    T[n_, k_] := Function[p, p[[1]] (n + f[k]) + p[[2]]][b[n-k, Min[n-k, k]]];
    Table[Table[T[n, k], {k, 1, n}], {n, 1, 14}] // Flatten (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)

A066185 Sum of the first moments of all partitions of n with weights starting at 0.

Original entry on oeis.org

0, 0, 1, 4, 12, 26, 57, 103, 191, 320, 537, 843, 1342, 2015, 3048, 4457, 6509, 9250, 13170, 18316, 25483, 34853, 47556, 64017, 86063, 114285, 151462, 198871, 260426, 338275, 438437, 564131, 724202, 924108, 1176201, 1489237, 1881273, 2365079, 2966620, 3705799
Offset: 0

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

The first element of each partition is given weight 0.
Consider the partitions of n, e.g., n=5. For each partition sum T(e-1) and sum all these. E.g., 5 -> T(4)=10, 41 -> T(3)+T(0)=6, 32 -> T(2)+T(1)=4, 311 -> T(2)+T(0)+T(0)=3, 221 -> T(1)+T(1)+T(0)=2, 21111 ->1 and 11111 ->0. Summing, 10+6+4+3+2+1+0 = 26 as desired. - Jon Perry, Dec 12 2003
Also equals the sum of f(p) over the partitions p of n, where f(p) is obtained by replacing each part p_i of partition p by p_i*(p_i-1)/2. See I. G. Macdonald: Symmetric functions and Hall polynomials 2nd edition, p. 3, eqn (1.5) and (1.6). - Wouter Meeussen, Sep 25 2014

Examples

			a(3)=4 because the first moments of all partitions of 3 are {3}.{0},{2,1}.{0,1} and {1,1,1}.{0,1,2}, resulting in 0,1,3; summing to 4.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, 0],
          b(n, i-1)+(h-> h+[0, h[1]*i*(i-1)/2])(b(n-i, min(n-i, i))))
        end:
    a:= n-> b(n$2)[2]:
    seq(a(n), n=0..50);  # Alois P. Heinz, Jan 29 2014
  • Mathematica
    Table[ Plus@@ Map[ #.Range[ 0, -1+Length[ # ] ]&, IntegerPartitions[ n ] ], {n, 40} ]
    b[n_, i_] := b[n, i] = If[n==0, {1, 0}, If[i<1, {0, 0}, If[i>n, b[n, i-1], b[n, i-1] + Function[h, h+{0, h[[1]]*i*(i-1)/2}][b[n-i, i]]]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Oct 26 2015, after Alois P. Heinz *)

Formula

a(n) = 1/2*(A066183(n) - A066186(n)). - Vladeta Jovovic, Mar 23 2003
G.f.: Sum_{k>=1} x^(2*k)/(1 - x^k)^3 / Product_{j>=1} (1 - x^j). - Ilya Gutkovskiy, Mar 05 2021
a(n) = Sum_{k=0..A161680(n)} k * A264034(n,k). - Alois P. Heinz, Jan 20 2023
a(n) ~ 3 * zeta(3) * sqrt(n) * exp(Pi*sqrt(2*n/3)) / (sqrt(2) * Pi^3). - Vaclav Kotesovec, Jul 06 2025

A206440 Volume of the last section of the set of partitions of n from the shell model of partitions version "Boxes".

Original entry on oeis.org

1, 5, 11, 27, 43, 93, 131, 247, 352, 584, 808, 1306, 1735, 2643, 3568, 5160, 6835, 9721, 12672, 17564, 22832, 30818, 39743, 53027, 67594, 88740, 112752, 145944, 183979, 236059, 295370, 375208, 467363, 588007, 728437, 910339, 1121009, 1391083, 1706003, 2103013
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2012

Keywords

Comments

Since partial sums of this sequence give A066183 we have that A066183(n) is also the volume of the mentioned version of the shell model of partitions with n shells. Each part of size k has a volume equal to k^2 since each box is a cuboid whose sides have lengths: 1, k, k.

Crossrefs

Row sums of triangle A206438. Partial sums give A066183.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n],
          b(n, i-1)+(p-> p+[0, p[1]*i^2])(b(n-i, min(n-i, i))))
        end:
    a:= n-> (b(n$2)-b(n-1$2))[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 23 2022
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n},
         b[n, i-1] + Function[p, p + {0, p[[1]]*i^2}][b[n-i, Min[n-i, i]]]];
    a[n_] := (b[n, n] - b[n-1, n-1])[[2]];
    Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Apr 25 2022, after Alois P. Heinz *)

Formula

a(n) ~ sqrt(3) * zeta(3) * exp(Pi*sqrt(2*n/3)) / Pi^2. - Vaclav Kotesovec, Oct 20 2024

A299768 Triangle read by rows: T(n,k) = sum of all squares of the parts k in all partitions of n, with n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 4, 4, 4, 9, 7, 12, 9, 16, 12, 16, 18, 16, 25, 19, 32, 36, 32, 25, 36, 30, 44, 54, 48, 50, 36, 49, 45, 76, 81, 96, 75, 72, 49, 64, 67, 104, 135, 128, 125, 108, 98, 64, 81, 97, 164, 189, 208, 200, 180, 147, 128, 81, 100, 139, 224, 279, 288, 300, 252, 245, 192, 162, 100, 121
Offset: 1

Views

Author

Omar E. Pol, Mar 19 2018

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   4,  4,  9;
   7, 12,  9, 16;
  12, 16, 18, 16, 25,
  19, 32, 36, 32, 25, 36;
  30, 44, 54, 48, 50, 36, 49;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1], so the squares of the parts are respectively [16], [4, 4], [9, 1], [4, 1, 1], [1, 1, 1, 1]. The sum of the squares of the parts 1 is 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7. The sum of the squares of the parts 2 is 4 + 4 + 4 = 12. The sum of the squares of the parts 3 is 9. The sum of the squares of the parts 4 is 16. So the fourth row of triangle is [7, 12, 9, 16].
		

Crossrefs

Column 1 is A000070.
Leading diagonal is A000290, n >= 1.
Row sums give A066183.
Both A180681 and A206561 have the same row sums as this triangle.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1+n*x, b(n, i-1)+
          (p-> p+(coeff(p, x, 0)*i^2)*x^i)(b(n-i, min(n-i, i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 20 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1 + n*x, b[n, i - 1] + # + (Coefficient[#, x, 0]*i^2*x^i)&[b[n - i, Min[n - i, i]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 1, n}]&[b[n, n]];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 22 2018, after Alois P. Heinz *)
  • PARI
    row(n) = {v = vector(n); forpart(p=n, for(k=1, #p, v[p[k]] += p[k]^2;);); v;} \\ Michel Marcus, Mar 20 2018

Formula

T(n,k) = (k^2)*A066633(n,k) = k*A138785(n,k). - Omar E. Pol, Jun 07 2018

Extensions

More terms from Michel Marcus, Mar 20 2018

A027992 a(n) = 1*T(n,0) + 2*T(n,1) + ... + (2n+1)*T(n,2n), T given by A027926.

Original entry on oeis.org

1, 6, 22, 66, 178, 450, 1090, 2562, 5890, 13314, 29698, 65538, 143362, 311298, 671746, 1441794, 3080194, 6553602, 13893634, 29360130, 61865986, 130023426, 272629762, 570425346, 1191182338, 2483027970, 5167382530, 10737418242
Offset: 0

Views

Author

Keywords

Comments

Also total sum of squares of parts in all compositions of n (offset 1). Total sum of cubes of parts in all compositions of n is (13*n-36)*2^(n-1)+6*n+18 with g.f. x*(1+4x+x^2)/((2x-1)(1-x))^2, A271638; total sum of fourth powers of parts in all compositions of n is (75*n-316)*2^(n-1)+12*n^2+72*n+158 with g.f. x*(1+x)*(x^2+10*x+1)/((2*x-1)^2*(1-x)^3); total sum of fifth powers of parts in all compositions of n is (541*n-3060)*2^(n-1)+20*n^3+180*n^2+790*n+1530. - Vladeta Jovovic, Mar 18 2005
Let M = the 3 X 3 matrix [(1,0,0),(1,2,0),(1,3,2)] and column vector V = [1,1,1]. a(n) is the lower term in the product M^n * V.

Crossrefs

Programs

  • Mathematica
    M = {{1, 0, 0}, {1, 2, 0}, {1, 3, 2}};
    a[n_] := MatrixPower[M, n].{1, 1, 1} // Last;
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 12 2018, from PARI *)
  • PARI
    vector(40, n, n--; ([1,0,0;1,2,0;1,3,2]^n*[1,1,1]~)[3]) \\ Michel Marcus, Aug 06 2015

Formula

a(n) = 2^n*(3n-1)+2 = A048496(n+1)-1 = A053565(n+1)+2. - Ralf Stephan, Jan 15 2004
a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). G.f.: (1+x)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 04 2012

A206438 Triangle read by rows which lists the squares of the parts of A135010.

Original entry on oeis.org

1, 1, 4, 1, 1, 9, 1, 1, 1, 4, 4, 16, 1, 1, 1, 1, 1, 4, 9, 25, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 16, 9, 9, 36, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 9, 4, 25, 9, 16, 49, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 4, 4, 4, 4, 4, 16, 4, 9, 9, 4, 36, 9, 25
Offset: 1

Views

Author

Omar E. Pol, Feb 08 2012

Keywords

Comments

Volumes of the parts in the section model of partitions version "boxes" in which each part of size k has a volume = k^2. Row sums of this triangle give A206440 and partial sums of A206440 give A066183.

Examples

			Written as a triangle:
1;
1,4;
1,1,9;
1,1,1,4,4,16;
1,1,1,1,1,4,9,25;
1,1,1,1,1,1,1,4,4,4,4,16,9,9,36;
1,1,1,1,1,1,1,1,1,1,1,4,4,9,4,25,9,16,49;
		

Crossrefs

Row n has length A138137(n).
Row sums give A206440.
Right border gives positives A000290.

Programs

  • Mathematica
    Table[Reverse@ConstantArray[{1}, PartitionsP[n - 1]] ~Join~ DeleteCases[Sort@PadRight[Reverse/@Cases[IntegerPartitions[n], x_ /; Last[x] != 1]], x_ /; x == 0, 2], {n, 1, 8}] ^2  // Flatten (* Robert Price, May 28 2020 *)

Formula

a(n) = A135010(n)^2.

A213180 Sum over all partitions lambda of n of Sum_{p:lambda} p^m(p,lambda), where m(p,lambda) is the multiplicity of part p in lambda.

Original entry on oeis.org

0, 1, 3, 7, 16, 28, 59, 91, 170, 269, 450, 655, 1162, 1602, 2527, 3793, 5805, 8034, 12660, 17131, 26484, 37384, 53738, 73504, 114683, 153613, 221225, 313339, 453769, 609179, 927968, 1223909, 1804710, 2522264, 3539835, 4855420, 7439870, 9765555, 14009545
Offset: 0

Views

Author

Alois P. Heinz, Feb 27 2013

Keywords

Examples

			a(6) = 59: (1^6) + (2+1^4) + (2^2+1^2) + (2^3) + (3+1^3) + (3+2+1) + (3^2) + (4+1^2) + (4+2) + (5+1) + (6) = 1+3+5+8+4+6+9+5+6+6+6 = 59.
		

Crossrefs

Cf. A000070 (Sum 1), A006128 (Sum m), A014153 (Sum p), A024786 (Sum floor(1/m)), A066183 (Sum p^2*m), A066186 (Sum p*m), A073336 (Sum floor(m/p)), A116646 (Sum delta(m,2)), A117524 (Sum delta(m,3)), A103628 (Sum delta(m,1)*p), A117525 (Sum delta(m,2)*p), A197126, A213191.

Programs

  • Maple
    b:= proc(n, p) option remember; `if`(n=0, [1, 0], `if`(p<1, [0, 0],
          add((l->`if`(m=0, l, l+[0, l[1]*p^m]))(b(n-p*m, p-1)), m=0..n/p)))
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=0..40);
  • Mathematica
    b[n_, p_] := b[n, p] = If[n==0, {1, 0}, If[p<1, {0, 0}, Sum[Function[l, If[m==0, l, l+{0, l[[1]]*p^m}]][b[n-p*m, p-1]], {m, 0, n/p}]]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Feb 15 2017, translated from Maple *)

Formula

From Vaclav Kotesovec, May 24 2018: (Start)
a(n) ~ c * 3^(n/3), where
c = 5.0144820680945600131204662934686439430547... if mod(n,3)=0
c = 4.6144523178014379613985400559486878971522... if mod(n,3)=1
c = 4.5237761454818383598444208605033385016299... if mod(n,3)=2
(End)
Showing 1-10 of 14 results. Next