cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A048496 a(n) = 2^(n-1)*(3*n-4) + 3.

Original entry on oeis.org

1, 2, 7, 23, 67, 179, 451, 1091, 2563, 5891, 13315, 29699, 65539, 143363, 311299, 671747, 1441795, 3080195, 6553603, 13893635, 29360131, 61865987, 130023427, 272629763, 570425347, 1191182339, 2483027971, 5167382531
Offset: 0

Views

Author

Keywords

Comments

a(n) = T(2, n), array T given by A048494.

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is (1, 4, 7, 10, ...).

Programs

Formula

a(n) = A027992(n-1) + 1 = A053565(n) + 3.
From R. J. Mathar, Oct 31 2008: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: (1 - 3*x + 5*x^2)/((1-x)(1-2*x)^2). (End)

Extensions

Formula from Ralf Stephan, Jan 15 2004

A053565 a(n) = 2^(n-1)*(3*n-4).

Original entry on oeis.org

-2, -1, 4, 20, 64, 176, 448, 1088, 2560, 5888, 13312, 29696, 65536, 143360, 311296, 671744, 1441792, 3080192, 6553600, 13893632, 29360128, 61865984, 130023424, 272629760, 570425344, 1191182336, 2483027968, 5167382528, 10737418240
Offset: 0

Views

Author

Barry E. Williams, Jan 17 2000

Keywords

References

  • A. H. Beiler, Recreations in the Theory of Numbers, Dover, N.Y., 1964, pp. 189, 194-196.

Crossrefs

Programs

  • GAP
    List([0..30], n-> 2^(n-1)*(3*n-4)) # G. C. Greubel, May 16 2019
  • Magma
    [2^(n-1)*(3*n-4): n in [0..30]]; // Vincenzo Librandi, Sep 26 2011
    
  • Mathematica
    Table[2^(n-1)*(3*n-4), {n,0,30}] (* G. C. Greubel, May 16 2019 *)
  • PARI
    vector(30, n, n--; 2^(n-1)*(3*n-4)) \\ G. C. Greubel, May 16 2019
    
  • Sage
    [2^(n-1)*(3*n-4) for n in (0..30)] # G. C. Greubel, May 16 2019
    

Formula

a(n) = 4*a(n-1) - 4*a(n-2), with a(0) = -2, a(1) = -1.
G.f.: -(2-7*x)/(1-2*x)^2. - Colin Barker, Apr 07 2012
E.g.f.: (3*x - 2)*exp(2*x). - G. C. Greubel, May 16 2019

A104746 Array T(n,k) read by antidiagonals: T(1,k) = 2^k-1 and recursively T(n,k) = T(n-1,k) + A000337(k-1), n,k >= 1.

Original entry on oeis.org

1, 1, 3, 1, 4, 7, 1, 5, 12, 15, 1, 6, 17, 32, 31, 1, 7, 22, 49, 80, 63, 1, 8, 27, 66, 129, 192, 127, 1, 9, 32, 83, 178, 321, 448, 255, 1, 10, 37, 100, 227, 450, 769, 1024, 511, 1, 11, 42, 117, 276, 579, 1090, 1793, 2304, 1023, 1, 12, 47, 134, 325, 708, 1411, 2562, 4097, 5120, 2047, 1, 13, 52, 151, 374, 837, 1732, 3331, 5890, 9217, 11264, 4095
Offset: 1

Views

Author

Gary W. Adamson, Mar 23 2005

Keywords

Comments

Generally, row n of the array is the binomial transform for 0, 1, n, 2n-1, 3n-2, 4n-3, ...

Examples

			To the first row, add the terms 0, 1, 5, 17, 49, 129, ... as indicated:
  1, 3,  7, 15, 31,  63, ...
  0, 1,  5, 17, 49, 129, ... (getting row 2 of the array:
  1, 4, 12, 32, 80, 192, ... (= A001787, binomial transform for 1,2,3, ...)
Repeat the operation, getting the following array T(n,k):
  1, 3,  7, 15,  31,  63, ...
  1, 4, 12, 32,  80, 192, ...
  1, 5, 17, 49, 129, 321, ...
  1, 6, 22, 66, 178, 450, ...
		

Crossrefs

Cf. A104747 (antidiagonal sums), A001787, A000337, A027992, A059823.

Programs

  • Maple
    A000337 := proc(n)
            1+(n-1)*2^n ;
    end proc:
    A104746 := proc(n,k)
            option remember;
            if n=  1 then
                    2^k-1 ;
            else
                    procname(n-1,k)+A000337(k-1) ;
            end if;
    end proc:
    for d from 1 to 12 do
            for k from 1 to d do
                    n := d-k+1 ;
                    printf("%d,",A104746(n,k)) ;
            end do:
    end do; # R. J. Mathar, Oct 30 2011
  • Mathematica
    A000337[n_] := (n - 1)*2^n + 1;
    T[1, k_] := 2^k - 1;
    T[n_, k_] := T[n, k] = T[n - 1, k] + A000337[k - 1];
    Table[T[n - k + 1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Mar 30 2024 *)

Formula

T(2,k) = A001787(k), binomial transform of 0, 1, 2, 3, 4, 5, 6, ...
T(3,k) = A000337(k), binomial transform of 0, 1, 3, 5, 7, 9, 11, ...
T(4,k) = A027992(k-1), binomial transform of 0, 1, 4, 7, 10, 13, 16, 19, 22, 25, ...
T(5,k) = binomial transform of 0, 1, 5, 9, 13, 17, 21, 25, 29, ...

Extensions

Terms corrected by R. J. Mathar, Oct 30 2011

A271638 The total sum of the cubes of all parts of all compositions of n.

Original entry on oeis.org

1, 10, 48, 170, 512, 1398, 3580, 8770, 20808, 48206, 109652, 245850, 544864, 1196134, 2605164, 5636210, 12124280, 25952382, 55312516, 117440650, 248512656, 524288150, 1103102108, 2315255970, 4848615592, 10133438638, 21139292340, 44023414970, 91536490688
Offset: 1

Views

Author

R. J. Mathar, Apr 11 2016

Keywords

Examples

			The two compositions of n=2 are 2 and 1+1. The total sum of the cubes is a(2) = 2^3+1^3+1^3 = 10.
		

Crossrefs

Cf. A027992 (sum of squares).

Programs

  • Mathematica
    Table[(13 n - 36) 2^(n - 1) + 6 n + 18, {n, 29}] (* or *)
    Rest@ CoefficientList[Series[x (1 + 4 x + x^2)/((1 - 2 x) (1 - x))^2, {x, 0, 29}], x] (* Michael De Vlieger, Apr 11 2016 *)
  • PARI
    x='x+O('x^99); Vec(x*(1+4*x+x^2)/((2*x-1)*(1-x))^2) \\ Altug Alkan, Apr 11 2016
    
  • Python
    for n in range(1,50):print((13*n-36)*2**(n-1)+6*n+18) # Soumil Mandal, Apr 11 2016

Formula

G.f.: x*(1 + 4*x + x^2)/((1 - 2*x)*(1 - x))^2.
a(n) = (13*n - 36)*2^(n - 1) + 6*n + 18.
Showing 1-4 of 4 results.