A027992 a(n) = 1*T(n,0) + 2*T(n,1) + ... + (2n+1)*T(n,2n), T given by A027926.
1, 6, 22, 66, 178, 450, 1090, 2562, 5890, 13314, 29698, 65538, 143362, 311298, 671746, 1441794, 3080194, 6553602, 13893634, 29360130, 61865986, 130023426, 272629762, 570425346, 1191182338, 2483027970, 5167382530, 10737418242
Offset: 0
Keywords
Links
- Alejandro Erickson and Mark Schurch, Monomer-dimer tatami tilings of square regions, arXiv preprint arXiv:1110.5103 [math.CO], 2011.
- Alejandro Erickson and Mark Schurch, Enumerating tatami mat arrangements of square grids, in 22nd International Workshop on Combinatorial Algorithms, University of Victoria, June 20-22, volume 7056 of Lecture Notes in Computer Science (LNCS), Springer Berlin / Heidelberg, 2011, pp. 223-235
- K. Kimura, S. Higuchi, Monte Carlo estimation of the number of tatami tilings, arXiv:1509.05983 [cond-mat.stat-mech], 2015-2016, eq. (2).
Programs
-
Mathematica
M = {{1, 0, 0}, {1, 2, 0}, {1, 3, 2}}; a[n_] := MatrixPower[M, n].{1, 1, 1} // Last; Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 12 2018, from PARI *)
-
PARI
vector(40, n, n--; ([1,0,0;1,2,0;1,3,2]^n*[1,1,1]~)[3]) \\ Michel Marcus, Aug 06 2015
Formula
a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). G.f.: (1+x)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 04 2012
Comments