cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A027992 a(n) = 1*T(n,0) + 2*T(n,1) + ... + (2n+1)*T(n,2n), T given by A027926.

Original entry on oeis.org

1, 6, 22, 66, 178, 450, 1090, 2562, 5890, 13314, 29698, 65538, 143362, 311298, 671746, 1441794, 3080194, 6553602, 13893634, 29360130, 61865986, 130023426, 272629762, 570425346, 1191182338, 2483027970, 5167382530, 10737418242
Offset: 0

Views

Author

Keywords

Comments

Also total sum of squares of parts in all compositions of n (offset 1). Total sum of cubes of parts in all compositions of n is (13*n-36)*2^(n-1)+6*n+18 with g.f. x*(1+4x+x^2)/((2x-1)(1-x))^2, A271638; total sum of fourth powers of parts in all compositions of n is (75*n-316)*2^(n-1)+12*n^2+72*n+158 with g.f. x*(1+x)*(x^2+10*x+1)/((2*x-1)^2*(1-x)^3); total sum of fifth powers of parts in all compositions of n is (541*n-3060)*2^(n-1)+20*n^3+180*n^2+790*n+1530. - Vladeta Jovovic, Mar 18 2005
Let M = the 3 X 3 matrix [(1,0,0),(1,2,0),(1,3,2)] and column vector V = [1,1,1]. a(n) is the lower term in the product M^n * V.

Crossrefs

Programs

  • Mathematica
    M = {{1, 0, 0}, {1, 2, 0}, {1, 3, 2}};
    a[n_] := MatrixPower[M, n].{1, 1, 1} // Last;
    Table[a[n], {n, 0, 27}] (* Jean-François Alcover, Aug 12 2018, from PARI *)
  • PARI
    vector(40, n, n--; ([1,0,0;1,2,0;1,3,2]^n*[1,1,1]~)[3]) \\ Michel Marcus, Aug 06 2015

Formula

a(n) = 2^n*(3n-1)+2 = A048496(n+1)-1 = A053565(n+1)+2. - Ralf Stephan, Jan 15 2004
a(n) = 5*a(n-1)-8*a(n-2)+4*a(n-3). G.f.: (1+x)/((1-x)*(1-2*x)^2). - Colin Barker, Apr 04 2012

A048496 a(n) = 2^(n-1)*(3*n-4) + 3.

Original entry on oeis.org

1, 2, 7, 23, 67, 179, 451, 1091, 2563, 5891, 13315, 29699, 65539, 143363, 311299, 671747, 1441795, 3080195, 6553603, 13893635, 29360131, 61865987, 130023427, 272629763, 570425347, 1191182339, 2483027971, 5167382531
Offset: 0

Views

Author

Keywords

Comments

a(n) = T(2, n), array T given by A048494.

Crossrefs

n-th difference of a(n), a(n-1), ..., a(0) is (1, 4, 7, 10, ...).

Programs

Formula

a(n) = A027992(n-1) + 1 = A053565(n) + 3.
From R. J. Mathar, Oct 31 2008: (Start)
a(n) = 5*a(n-1) - 8*a(n-2) + 4*a(n-3).
G.f.: (1 - 3*x + 5*x^2)/((1-x)(1-2*x)^2). (End)

Extensions

Formula from Ralf Stephan, Jan 15 2004
Showing 1-2 of 2 results.