cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-6 of 6 results.

A299772 Triangle read by rows T(n,k) in which the partial sums of column k give the column k of triangle A180681.

Original entry on oeis.org

1, 2, 3, 3, 2, 6, 4, 11, 2, 10, 5, 7, 14, 2, 15, 6, 24, 22, 18, 2, 21, 7, 15, 30, 26, 23, 2, 28, 8, 42, 41, 58, 31, 29, 2, 36, 9, 26, 81, 48, 68, 37, 36, 2, 45, 10, 65, 72, 124, 88, 80, 44, 44, 2, 55, 11, 40, 127, 121, 142, 100, 94, 52, 53, 2, 66, 12, 93, 156, 232, 177, 208, 114, 110, 61, 63, 2, 78
Offset: 1

Views

Author

Omar E. Pol, Mar 20 2018

Keywords

Examples

			Triangle begins:
   1;
   2,  3;
   3,  2,   6;
   4, 11,   2,  10;
   5,  7,  14,   2,  15;
   6, 24,  22,  18,   2,  21;
   7, 15,  30,  26,  23,   2,  28;
   8, 42,  41,  58,  31,  29,   2,  36;
   9, 26,  81,  48,  68,  37,  36,   2, 45;
  10, 65,  72, 124,  88,  80,  44,  44,  2, 55;
  11, 40, 127, 121, 142, 100,  94,  52, 53,  2, 66;
  12, 93, 156, 232, 177, 208, 114, 110, 61, 63,  2, 78;
...
		

Crossrefs

Column 1 is A000027.
Leading diagonal is A000217.
Row sums give A206440.
Apparently the second diagonal gives A007395.
Cf. A180681.

A066183 Total sum of squares of parts in all partitions of n.

Original entry on oeis.org

1, 6, 17, 44, 87, 180, 311, 558, 910, 1494, 2302, 3608, 5343, 7986, 11554, 16714, 23549, 33270, 45942, 63506, 86338, 117156, 156899, 209926, 277520, 366260, 479012, 624956, 808935, 1044994, 1340364, 1715572, 2182935, 2770942, 3499379
Offset: 1

Views

Author

Wouter Meeussen, Dec 15 2001

Keywords

Comments

Sum of hook lengths of all boxes in the Ferrers diagrams of all partitions of n (see the Guo-Niu Han paper, p. 25, Corollary 6.5). Example: a(3) = 17 because for the partitions (3), (2,1), (1,1,1) of n=3 the hook length multi-sets are {3,2,1}, {3,1,1}, {3,2,1}, respectively; the total sum of all hook lengths is 6+5+6 = 17. - Emeric Deutsch, May 15 2008
Partial sums of A206440. - Omar E. Pol, Feb 08 2012
Column k=2 of A213191. - Alois P. Heinz, Sep 20 2013
Row sums of triangles A180681, A206561 and A299768. - Omar E. Pol, Mar 20 2018

Examples

			a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i) option remember; local g, h;
          if n=0 then [1, 0]
        elif i<1 then [0, 0]
        elif i>n then b(n, i-1)
        else g:= b(n, i-1); h:= b(n-i, i);
             [g[1]+h[1], g[2]+h[2] +h[1]*i^2]
          fi
        end:
    a:= n-> b(n, n)[2]:
    seq(a(n), n=1..40);  # Alois P. Heinz, Feb 23 2012
    # second Maple program:
    g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
  • Mathematica
    Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
    (* Second program: *)
    b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] :=  b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
  • PARI
    a(n)=my(s); forpart(v=n,s+=sum(i=1,#v,v[i]^2));s \\ Charles R Greathouse IV, Aug 31 2015
    
  • PARI
    a(n)=sum(k=1,n,sigma(k,2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015

Formula

a(n) = Sum_{k=1..n} sigma_2(k)*numbpart(n-k), where sigma_2(k)=sum of squares of divisors of k=A001157(k). - Vladeta Jovovic, Jan 26 2002
a(n) = Sum_{k>=0} k*A265245(n,k). - Emeric Deutsch, Dec 06 2015
G.f.: g(x) = (Sum_{k>=1} k^2*x^k/(1-x^k))/Product_{q>=1} (1-x^q). - Emeric Deutsch, Dec 06 2015
a(n) ~ 3*sqrt(2)*Zeta(3)/Pi^3 * exp(Pi*sqrt(2*n/3)) * sqrt(n). - Vaclav Kotesovec, May 28 2018

Extensions

More terms from Naohiro Nomoto, Feb 07 2002

A206561 Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.

Original entry on oeis.org

1, 4, 2, 9, 5, 3, 20, 13, 7, 4, 35, 23, 15, 9, 5, 66, 47, 31, 19, 11, 6, 105, 75, 53, 35, 23, 13, 7, 176, 131, 93, 66, 42, 27, 15, 8, 270, 203, 151, 106, 74, 49, 31, 17, 9, 420, 323, 241, 178, 126, 86, 56, 35, 19, 10, 616, 477, 365, 272, 200, 140, 98, 63, 39, 21, 11
Offset: 1

Views

Author

Omar E. Pol, Feb 14 2012

Keywords

Comments

From Omar E. Pol, Mar 18 2018: (Start)
In the n-th row of the triangle the first differences together with its last term give the n-th row of triangle A138785 (see below):
Row..........: 1 2 3 4 5 ...
--- ---- ------- ------------ ----------------
This triangle: 1; 4, 2; 9, 5, 3; 20, 13, 7, 4; 35, 23, 15, 9, 5; ...
| | /| | /| /| | / | /| /| | / | / | /| /|
| |/ | |/ |/ | |/ |/ |/ | |/ |/ |/ |/ |
A138785......: 1; 2, 2; 4, 2, 3; 7, 6, 3, 4; 12, 8, 6, 4, 5; ... (End)

Examples

			Triangle begins:
    1;
    4,  2;
    9,  5,  3;
   20, 13,  7,  4;
   35, 23, 15,  9,  5;
   66, 47, 31, 19, 11,  6;
  105, 75, 53, 35, 23, 13,  7;
  ...
		

Crossrefs

Columns 1-2 give A066186, A194552.
Right border gives A000027.
Row sums give A066183. - Omar E. Pol, Mar 19 2018
Both A180681 and A299768 have the same row sums as this triangle. - Omar E. Pol, Mar 21 2018

Programs

  • Mathematica
    Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Mar 19 2018 *)

Formula

T(n,n) = n, T(n,k) = T(n,k+1) + k * A066633(n,k) for k < n.
T(n,k) = Sum_{i=k..n} A138785(n,i).

Extensions

More terms from Alois P. Heinz, Feb 14 2012

A299768 Triangle read by rows: T(n,k) = sum of all squares of the parts k in all partitions of n, with n >= 1, 1 <= k <= n.

Original entry on oeis.org

1, 2, 4, 4, 4, 9, 7, 12, 9, 16, 12, 16, 18, 16, 25, 19, 32, 36, 32, 25, 36, 30, 44, 54, 48, 50, 36, 49, 45, 76, 81, 96, 75, 72, 49, 64, 67, 104, 135, 128, 125, 108, 98, 64, 81, 97, 164, 189, 208, 200, 180, 147, 128, 81, 100, 139, 224, 279, 288, 300, 252, 245, 192, 162, 100, 121
Offset: 1

Views

Author

Omar E. Pol, Mar 19 2018

Keywords

Examples

			Triangle begins:
   1;
   2,  4;
   4,  4,  9;
   7, 12,  9, 16;
  12, 16, 18, 16, 25,
  19, 32, 36, 32, 25, 36;
  30, 44, 54, 48, 50, 36, 49;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1], so the squares of the parts are respectively [16], [4, 4], [9, 1], [4, 1, 1], [1, 1, 1, 1]. The sum of the squares of the parts 1 is 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7. The sum of the squares of the parts 2 is 4 + 4 + 4 = 12. The sum of the squares of the parts 3 is 9. The sum of the squares of the parts 4 is 16. So the fourth row of triangle is [7, 12, 9, 16].
		

Crossrefs

Column 1 is A000070.
Leading diagonal is A000290, n >= 1.
Row sums give A066183.
Both A180681 and A206561 have the same row sums as this triangle.

Programs

  • Maple
    b:= proc(n, i) option remember; `if`(n=0 or i=1, 1+n*x, b(n, i-1)+
          (p-> p+(coeff(p, x, 0)*i^2)*x^i)(b(n-i, min(n-i, i))))
        end:
    T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
    seq(T(n), n=1..14);  # Alois P. Heinz, Mar 20 2018
  • Mathematica
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1 + n*x, b[n, i - 1] + # + (Coefficient[#, x, 0]*i^2*x^i)&[b[n - i, Min[n - i, i]]]];
    T[n_] := Table[Coefficient[#, x, i], {i, 1, n}]&[b[n, n]];
    Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 22 2018, after Alois P. Heinz *)
  • PARI
    row(n) = {v = vector(n); forpart(p=n, for(k=1, #p, v[p[k]] += p[k]^2;);); v;} \\ Michel Marcus, Mar 20 2018

Formula

T(n,k) = (k^2)*A066633(n,k) = k*A138785(n,k). - Omar E. Pol, Jun 07 2018

Extensions

More terms from Michel Marcus, Mar 20 2018

A331987 a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.

Original entry on oeis.org

0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
Offset: 0

Views

Author

Peter Luschny, Feb 19 2020

Keywords

Comments

The start values of the partial rows on the main diagonal of A332662 in the representation in the example section.
Apparently the sum of the hook lengths over the partitions of 2*n + 1 with exactly 2 parts (cf. A180681).

Crossrefs

Apparently a bisection of A049779 and of A024862.

Programs

  • Magma
    [n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
    
  • Maple
    a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
    gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
    seq(coeff(ser, x, n), n=0..41);
  • Mathematica
    LinearRecurrence[{4,-6,4,-1}, {0,5,23,62}, 42]
    Table[(n-9n^2+8n^3)/6,{n,50}] (* Harvey P. Dale, Apr 11 2024 *)
  • SageMath
    def A331987(n): return n*(n+1)*(8*n+7)/6
    [A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023

Formula

a(n) = [x^n] (x*(5 + 3*x)/(1 - x)^4).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = binomial(n+2, 3) + binomial(n+1, 3) + 2*(n+1)*binomial(n+1, 2).
From G. C. Greubel, Apr 19 2023: (Start)
a(n) = 3*binomial(n+1,1) - 11*binomial(n+2,2) + 8*binomial(n+3,3).
a(n) = n*binomial(8*n+8,2)/24.
a(n) = n*(n+1)*(8*n+7)/6.
E.g.f.: (1/6)*x*(30 + 39*x + 8*x^2)*exp(x). (End)

A301499 Total sum of the hook lengths over all partitions of 2n-1 having exactly n parts.

Original entry on oeis.org

1, 5, 22, 56, 139, 269, 554, 956, 1724, 2830, 4686, 7286, 11539, 17261, 26076, 38130, 55753, 79385, 113350, 158152, 220883, 303346, 415752, 562264, 759601, 1013728, 1350404, 1782342, 2346390, 3064045, 3992698, 5165042, 6666529, 8552739, 10944782, 13932362
Offset: 1

Views

Author

Alois P. Heinz, Mar 22 2018

Keywords

Crossrefs

Cf. A180681.

Programs

  • Maple
    f:= n-> (n-1)*n/2:
    b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
          b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
        end:
    a:= n-> (p-> p[1]*(2*n-1+f(n))+p[2])(b(n-1$2)):
    seq(a(n), n=1..45);
  • Mathematica
    f[n_] := n(n-1)/2;
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
    a[n_] := Function[p, p[[1]] (2n - 1 + f[n]) + p[[2]]][b[n - 1, n - 1]];
    Array[a, 45] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)

Formula

a(n) = A180681(2*n-1,n).
a(n) ~ exp(Pi*sqrt(2*n/3)) * n / (8*sqrt(3)). - Vaclav Kotesovec, May 27 2018
Showing 1-6 of 6 results.