A299772
Triangle read by rows T(n,k) in which the partial sums of column k give the column k of triangle A180681.
Original entry on oeis.org
1, 2, 3, 3, 2, 6, 4, 11, 2, 10, 5, 7, 14, 2, 15, 6, 24, 22, 18, 2, 21, 7, 15, 30, 26, 23, 2, 28, 8, 42, 41, 58, 31, 29, 2, 36, 9, 26, 81, 48, 68, 37, 36, 2, 45, 10, 65, 72, 124, 88, 80, 44, 44, 2, 55, 11, 40, 127, 121, 142, 100, 94, 52, 53, 2, 66, 12, 93, 156, 232, 177, 208, 114, 110, 61, 63, 2, 78
Offset: 1
Triangle begins:
1;
2, 3;
3, 2, 6;
4, 11, 2, 10;
5, 7, 14, 2, 15;
6, 24, 22, 18, 2, 21;
7, 15, 30, 26, 23, 2, 28;
8, 42, 41, 58, 31, 29, 2, 36;
9, 26, 81, 48, 68, 37, 36, 2, 45;
10, 65, 72, 124, 88, 80, 44, 44, 2, 55;
11, 40, 127, 121, 142, 100, 94, 52, 53, 2, 66;
12, 93, 156, 232, 177, 208, 114, 110, 61, 63, 2, 78;
...
Apparently the second diagonal gives
A007395.
A066183
Total sum of squares of parts in all partitions of n.
Original entry on oeis.org
1, 6, 17, 44, 87, 180, 311, 558, 910, 1494, 2302, 3608, 5343, 7986, 11554, 16714, 23549, 33270, 45942, 63506, 86338, 117156, 156899, 209926, 277520, 366260, 479012, 624956, 808935, 1044994, 1340364, 1715572, 2182935, 2770942, 3499379
Offset: 1
a(3) = 17 because the squares of all partitions of 3 are {9}, {4,1} and {1,1,1}, summing to 17.
-
b:= proc(n, i) option remember; local g, h;
if n=0 then [1, 0]
elif i<1 then [0, 0]
elif i>n then b(n, i-1)
else g:= b(n, i-1); h:= b(n-i, i);
[g[1]+h[1], g[2]+h[2] +h[1]*i^2]
fi
end:
a:= n-> b(n, n)[2]:
seq(a(n), n=1..40); # Alois P. Heinz, Feb 23 2012
# second Maple program:
g := (sum(k^2*x^k/(1-x^k), k = 1..100))/(product(1-x^k, k = 1..100)): gser := series(g, x = 0, 45): seq(coeff(gser, x, m), m = 1 .. 40); # Emeric Deutsch, Dec 06 2015
-
Table[Apply[Plus, IntegerPartitions[n]^2, {0, 2}], {n, 30}]
(* Second program: *)
b[n_, i_] := b[n, i] = Module[{g, h}, Which[n==0, {1, 0}, i<1, {0, 0}, i>n, b[n, i-1], True, g = b[n, i-1]; h = b[n-i, i]; {g[[1]] + h[[1]], g[[2]] + h[[2]] + h[[1]]*i^2}]]; a[n_] := b[n, n][[2]]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Aug 31 2015, after Alois P. Heinz *)
-
a(n)=my(s); forpart(v=n,s+=sum(i=1,#v,v[i]^2));s \\ Charles R Greathouse IV, Aug 31 2015
-
a(n)=sum(k=1,n,sigma(k,2)*numbpart(n-k)) \\ Charles R Greathouse IV, Aug 31 2015
A206561
Triangle read by rows: T(n,k) = total sum of parts >= k in all partitions of n.
Original entry on oeis.org
1, 4, 2, 9, 5, 3, 20, 13, 7, 4, 35, 23, 15, 9, 5, 66, 47, 31, 19, 11, 6, 105, 75, 53, 35, 23, 13, 7, 176, 131, 93, 66, 42, 27, 15, 8, 270, 203, 151, 106, 74, 49, 31, 17, 9, 420, 323, 241, 178, 126, 86, 56, 35, 19, 10, 616, 477, 365, 272, 200, 140, 98, 63, 39, 21, 11
Offset: 1
Triangle begins:
1;
4, 2;
9, 5, 3;
20, 13, 7, 4;
35, 23, 15, 9, 5;
66, 47, 31, 19, 11, 6;
105, 75, 53, 35, 23, 13, 7;
...
-
Table[With[{s = IntegerPartitions[n]}, Table[Total@ Flatten@ Map[Select[#, # >= k &] &, s], {k, n}]], {n, 11}] // Flatten (* Michael De Vlieger, Mar 19 2018 *)
A299768
Triangle read by rows: T(n,k) = sum of all squares of the parts k in all partitions of n, with n >= 1, 1 <= k <= n.
Original entry on oeis.org
1, 2, 4, 4, 4, 9, 7, 12, 9, 16, 12, 16, 18, 16, 25, 19, 32, 36, 32, 25, 36, 30, 44, 54, 48, 50, 36, 49, 45, 76, 81, 96, 75, 72, 49, 64, 67, 104, 135, 128, 125, 108, 98, 64, 81, 97, 164, 189, 208, 200, 180, 147, 128, 81, 100, 139, 224, 279, 288, 300, 252, 245, 192, 162, 100, 121
Offset: 1
Triangle begins:
1;
2, 4;
4, 4, 9;
7, 12, 9, 16;
12, 16, 18, 16, 25,
19, 32, 36, 32, 25, 36;
30, 44, 54, 48, 50, 36, 49;
...
For n = 4 the partitions of 4 are [4], [2, 2], [3, 1], [2, 1, 1], [1, 1, 1, 1], so the squares of the parts are respectively [16], [4, 4], [9, 1], [4, 1, 1], [1, 1, 1, 1]. The sum of the squares of the parts 1 is 1 + 1 + 1 + 1 + 1 + 1 + 1 = 7. The sum of the squares of the parts 2 is 4 + 4 + 4 = 12. The sum of the squares of the parts 3 is 9. The sum of the squares of the parts 4 is 16. So the fourth row of triangle is [7, 12, 9, 16].
Leading diagonal is
A000290, n >= 1.
-
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1+n*x, b(n, i-1)+
(p-> p+(coeff(p, x, 0)*i^2)*x^i)(b(n-i, min(n-i, i))))
end:
T:= n-> (p-> seq(coeff(p, x, i), i=1..n))(b(n$2)):
seq(T(n), n=1..14); # Alois P. Heinz, Mar 20 2018
-
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, 1 + n*x, b[n, i - 1] + # + (Coefficient[#, x, 0]*i^2*x^i)&[b[n - i, Min[n - i, i]]]];
T[n_] := Table[Coefficient[#, x, i], {i, 1, n}]&[b[n, n]];
Table[T[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, May 22 2018, after Alois P. Heinz *)
-
row(n) = {v = vector(n); forpart(p=n, for(k=1, #p, v[p[k]] += p[k]^2;);); v;} \\ Michel Marcus, Mar 20 2018
A331987
a(n) = ((n + 1) - 9*(n + 1)^2 + 8*(n + 1)^3)/6.
Original entry on oeis.org
0, 5, 23, 62, 130, 235, 385, 588, 852, 1185, 1595, 2090, 2678, 3367, 4165, 5080, 6120, 7293, 8607, 10070, 11690, 13475, 15433, 17572, 19900, 22425, 25155, 28098, 31262, 34655, 38285, 42160, 46288, 50677, 55335, 60270, 65490, 71003, 76817, 82940, 89380, 96145
Offset: 0
-
[n*(n+1)*(8*n+7)/6: n in [0..50]]; // G. C. Greubel, Apr 19 2023
-
a := n -> ((n+1) - 9*(n+1)^2 + 8*(n+1)^3)/6: seq(a(n), n=0..41);
gf := (x*(3*x + 5))/(x - 1)^4: ser := series(gf, x, 44):
seq(coeff(ser, x, n), n=0..41);
-
LinearRecurrence[{4,-6,4,-1}, {0,5,23,62}, 42]
Table[(n-9n^2+8n^3)/6,{n,50}] (* Harvey P. Dale, Apr 11 2024 *)
-
def A331987(n): return n*(n+1)*(8*n+7)/6
[A331987(n) for n in range(51)] # G. C. Greubel, Apr 19 2023
A301499
Total sum of the hook lengths over all partitions of 2n-1 having exactly n parts.
Original entry on oeis.org
1, 5, 22, 56, 139, 269, 554, 956, 1724, 2830, 4686, 7286, 11539, 17261, 26076, 38130, 55753, 79385, 113350, 158152, 220883, 303346, 415752, 562264, 759601, 1013728, 1350404, 1782342, 2346390, 3064045, 3992698, 5165042, 6666529, 8552739, 10944782, 13932362
Offset: 1
-
f:= n-> (n-1)*n/2:
b:= proc(n, i) option remember; `if`(n=0 or i=1, [1, n+f(n)],
b(n, i-1)+(p-> p+[0, p[1]*(n+f(i))])(b(n-i, min(n-i, i))))
end:
a:= n-> (p-> p[1]*(2*n-1+f(n))+p[2])(b(n-1$2)):
seq(a(n), n=1..45);
-
f[n_] := n(n-1)/2;
b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {1, n + f[n]}, b[n, i - 1] + Function[p, p + {0, p[[1]] (n + f[i])}][b[n - i, Min[n - i, i]]]];
a[n_] := Function[p, p[[1]] (2n - 1 + f[n]) + p[[2]]][b[n - 1, n - 1]];
Array[a, 45] (* Jean-François Alcover, Dec 12 2020, after Alois P. Heinz *)
Showing 1-6 of 6 results.
Comments