A132735 Triangle T(n,k) = binomial(n,k) + 1 with T(n,0) = T(n,n) = 1, read by rows.
1, 1, 1, 1, 3, 1, 1, 4, 4, 1, 1, 5, 7, 5, 1, 1, 6, 11, 11, 6, 1, 1, 7, 16, 21, 16, 7, 1, 1, 8, 22, 36, 36, 22, 8, 1, 1, 9, 29, 57, 71, 57, 29, 9, 1, 1, 10, 37, 85, 127, 127, 85, 37, 10, 1, 1, 11, 46, 121, 211, 253, 211, 121, 46, 11, 1, 1, 12, 56, 166, 331, 463, 463, 331, 166, 56, 12, 1
Offset: 0
Examples
First few rows of the triangle are: 1; 1, 1; 1, 3, 1; 1, 4, 4, 1; 1, 5, 7, 5, 1; 1, 6, 11, 11, 6, 1; 1, 7, 16, 21, 16, 7, 1; ...
Links
- G. C. Greubel, Rows n = 0..100 of the triangle, flattened
Crossrefs
Programs
-
Magma
T:= func< n,k | k eq 0 or k eq n select 1 else Binomial(n,k) + 1 >; [T(n,k): k in [0..n], n in [0..12]]; // _G. C. Greubel, Feb 14 2021
-
Mathematica
T[n_, k_]:= If[k==0||k==n, 1, Binomial[n,k] +1]; Table[T[n,k], {n,0,12}, {k,0,n}]//Flatten (* G. C. Greubel, Feb 14 2021 *)
-
Sage
def T(n, k): return 1 if (k==0 or k==n) else binomial(n, k) + 1 flatten([[T(n,k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Feb 14 2021
Formula
T(n,0) = T(n,n) = 1; T(n,k) = C(n,k) + 1 otherwise. - Franklin T. Adams-Watters, Jul 06 2009
Sum_{k=0..n} T(n, k) = 2^n + n - 1 + [n=0] = A132736(n). - G. C. Greubel, Feb 14 2021
Extensions
Corrected and extended by Franklin T. Adams-Watters, Jul 06 2009
Comments