A132736 Row sums of triangle A132735.
1, 2, 5, 10, 19, 36, 69, 134, 263, 520, 1033, 2058, 4107, 8204, 16397, 32782, 65551, 131088, 262161, 524306, 1048595, 2097172, 4194325, 8388630, 16777239, 33554456, 67108889, 134217754, 268435483, 536870940, 1073741853, 2147483678
Offset: 0
Keywords
Examples
a(4) = 19 = sum of row 4 terms of triangle A132735: (1 + 5 + 7 + 5 + 1). a(3) = 10 = (1, 3, 3, 1) dot (1, 1, 2, 0) = (1 + 3 + 6 + 0).
Links
- G. C. Greubel, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (4,-5,2).
Crossrefs
Cf. A132735.
Programs
-
Magma
[1] cat [2^n + n-1: n in [1..30]]; // G. C. Greubel, Feb 14 2021
-
Maple
a:= proc(n) option remember; if n=0 then 1 else add((binomial(n,j)+1), j=0..n-1) fi end: seq(a(n), n=0..31);# Zerinvary Lajos, Mar 29 2009
-
Mathematica
Table[2^n + n-1 + Boole[n==0], {n,0,30}] (* G. C. Greubel, Feb 14 2021 *)
-
Sage
[1]+[2^n + n-1 for n in (1..30)] # G. C. Greubel, Feb 14 2021
Formula
Binomial transform of [1, 1, 2, 0, 2, 0, 2, 0, 2, ...].
From Colin Barker, Aug 12 2012: (Start)
a(n) = 4*a(n-1) -5*a(n-2) +2*a(n-3) for n>3.
G.f.: (1 -2*x +2*x^2 -2*x^3)/((1-x)^2*(1-2*x)). (End)
From G. C. Greubel, Feb 14 2021: (Start)
a(n) = 2^n + n - 1 + [n=0].
E.g.f.: 1 - (1-x)*exp(x) + exp(2*x). (End)
Extensions
More terms from R. J. Mathar, Jun 12 2008
Comments