A131839 Additive persistence of Sierpinski numbers of first kind.
0, 0, 2, 2, 2, 3, 2, 3, 3, 1, 2, 3, 3, 2, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 3, 3, 3, 4, 2, 3, 3, 2, 3, 3, 3, 3, 3, 3, 2, 3, 2, 2, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 3, 3, 3, 4, 2, 3, 4, 3, 3, 3, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 3, 3, 3, 3, 3, 4, 3, 3, 4, 3, 3, 4, 1, 3, 4, 3, 3, 4
Offset: 1
Examples
Sierpinski number 257 --> 2+5+7 = 14 --> 1+4 = 5 thus persistence is 2. The sixteenth Sierpinski number is 16^16 + 1 = 18446744073709551617 --> 1+8+4+4+6+7+4+4+0+7+3+7+0+9+5+5+1+6+1+7 = 89 --> 8+9 = 17 --> 1+7 = 8, thus a(16) = 3 because in three steps we obtain a number < 10. - _Antti Karttunen_, Dec 15 2017
Links
- Robert G. Wilson v, Table of n, a(n) for n = 1..10000 (first 2048 terms from Antti Karttunen)
Programs
-
Maple
f:= proc(n) local t, count; t:= n^n+1; count:= 0; while t > 9 do count:= count+1; t:= convert(convert(t,base,10),`+`); od; count end proc: map(f, [$1..100]); # Robert Israel, Dec 18 2017
-
Mathematica
f[n_] := Length@ NestWhileList[Plus @@ IntegerDigits@# &, n^n + 1, UnsameQ@## &, All] - 2; Array[f, 105] (* Robert G. Wilson v, Dec 18 2017 *)
-
PARI
allocatemem(2^30); A007953(n) = { my(s); while(n, s+=n%10; n\=10); s; }; A031286(n) = { my(s); while(n>9, s++; n=A007953(n)); s; }; \\ This function after Charles R Greathouse IV, Sep 13 2012 A014566(n) = (1+(n^n)); A131839(n) = A031286(A014566(n)); \\ Antti Karttunen, Dec 15 2017
Formula
Extensions
Erroneous terms (first at n=16) corrected by Antti Karttunen, Dec 15 2017