cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131872 Set m = 0, n = 1. Find smallest k >= 2 such that pi(k) = (k-pi(k)) - (m-pi(m)); set a(n) = pi(k), m = k, n = n+1. Repeat.

Original entry on oeis.org

1, 4, 8, 11, 16, 23, 30, 39, 50, 62, 78, 97, 119, 141, 172, 205, 242, 284, 334, 393, 455, 531, 615, 704, 811, 928, 1059, 1213, 1373, 1560, 1761, 1988, 2239, 2524, 2833, 3180, 3557, 3983, 4448, 4942, 5503, 6126, 6791, 7522, 8331, 9228, 10188, 11228
Offset: 1

Views

Author

Manuel Valdivia, Oct 05 2007

Keywords

Comments

For n>1, a(n)-a(n-1) is approximately pi(n)^2/n.

Examples

			m=0, n=1; pi(2) = (2-1)-(0) = 1 = number of nonprimes from 1 to 2, a(1) = 1 is a term. Now n=2, m=2.
pi(9) = (9-4)-(2-1) = 4 = number of nonprimes from 3 to 9, a(2) = 4 is a term. Now n=3, m=9.
pi(21) = (21-8)-(9-4) = 8 = number of nonprimes from 10 to 21, a(3) = 8 is a term.
		

Crossrefs

Programs

  • Mathematica
    m=0; Do[If[PrimePi[n]==(n-PrimePi[n])-(m-PrimePi[m]), Print[PrimePi[n]]; m=n], {n, 1, 10^6, 1}]
  • PARI
    lista(nn) = my(m=0, list = List()); for (n=1, nn, my(k=2); while(primepi(k) != (k-primepi(k)) - (m-primepi(m)), k++); listput(list, primepi(k)); m = k;); Vec(list); \\ Michel Marcus, Nov 13 2023

Extensions

Edited by N. J. A. Sloane, Nov 05 2007