A131877 a(n) = 14*n + 1.
1, 15, 29, 43, 57, 71, 85, 99, 113, 127, 141, 155, 169, 183, 197, 211, 225, 239, 253, 267, 281, 295, 309, 323, 337, 351, 365, 379, 393, 407, 421, 435, 449, 463, 477, 491, 505, 519, 533, 547, 561, 575, 589, 603, 617, 631, 645, 659, 673, 687, 701, 715, 729
Offset: 0
Keywords
Examples
a(2) = 29 = 2*14 + 1. a(2) = 29 = (1, 2, 1) dot (1, 14, 0) = (1 + 28 + 0).
Links
- Index entries for linear recurrences with constant coefficients, signature (2,-1).
Programs
-
Mathematica
Range[1, 1000, 14] (* Vladimir Joseph Stephan Orlovsky, May 31 2011 *)
Formula
a(n) = 14*n + 1.
From Elmo R. Oliveira, Apr 03 2024: (Start)
G.f.: (1+13*x)/(1-x)^2.
E.g.f.: exp(x)*(1 + 14*x).
a(n) = 2*a(n-1) - a(n-2) for n >= 2. (End)
Comments