A131932 Number of nonisomorphic nonsolvable groups of order A056866(n).
1, 3, 1, 1, 8, 1, 3, 6, 1, 26, 2, 2, 5, 2, 8, 23, 1, 6, 1, 107, 6, 1, 14, 1, 1, 1, 19, 2, 8, 28, 1, 93, 2, 4, 5, 5, 22, 1, 10, 1, 1, 588, 2, 20, 5, 1, 64, 4, 1, 5, 2, 5, 81, 1, 1, 18, 1, 25, 112, 2, 5, 1, 1
Offset: 1
Keywords
Examples
a(1) = 1 because there is only 1 nonsolvable group of order 60: A_5 (alternating group of 5th degree). a(2) = 3 because there are 3 different nonsolvable groups of order 120.
Links
- O. L. Hoelder, Bildung zusammengesetzter Gruppen, Math. Ann., 46 (1895), 321-422; see p. 420.
Programs
-
GAP
NrUnsolvable := function(n) local i, count; count := 0; for i in [1..NumberSmallGroups(n)] do if not IsSolvableGroup(SmallGroup(n, i)) then count := count + 1; fi; od; return count; end; # Eric M. Schmidt, Apr 04 2013
-
GAP
LoadPackage("GrpConst"); NrUnsolvable := function(n) local i, j, num; num := 0; for i in DivisorsInt(n) do if i<>1 then for j in [1..NrPerfectGroups(i)] do num := num + Length(Remove(UpwardsExtensions(PerfectGroup(IsPermGroup, i, j), n/i))); od; fi; od; return num; end; # Eric M. Schmidt, Nov 14 2013
Extensions
Edited by N. J. A. Sloane, Oct 08 2007
More terms from Eric M. Schmidt, Apr 04 2013
a(44)-a(63) from Eric M. Schmidt, Nov 14 2013