cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131945 Number of partitions of n where odd parts are distinct or repeated once.

Original entry on oeis.org

1, 1, 2, 2, 4, 5, 8, 10, 15, 18, 26, 32, 45, 55, 74, 90, 119, 145, 188, 228, 291, 351, 442, 532, 664, 796, 982, 1172, 1435, 1708, 2076, 2462, 2972, 3512, 4214, 4966, 5929, 6965, 8272, 9688, 11457, 13383, 15762, 18362, 21543, 25031, 29264, 33922, 39533, 45717
Offset: 0

Views

Author

Brian Drake, Jul 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Also number of partitions of n such that every part is not congruent to 3 mod 6. More generally, g.f. for number of partitions of n such that every odd part occurs at most m times is product_{n=1..oo} (1-q^((m+1)*(2*n-1)))/(1-q^n). Similarly, g.f. for number of partitions of n such that every even part occurs at most m times is product_{n=1..oo} (1-q^((2*m+2)*n))/(1-q^n). - Vladeta Jovovic, Aug 01 2007

Examples

			a(6) = 8 because we have 6, 5+1, 4+2, 4+1+1, 3+3, 3+2+1, 2+2+2 and 2+2+1+1. The three excluded partitions of 6 are 3+1+1+1, 2+1+1+1+1 and 1+1+1+1+1+1.
G.f. = 1 + x + 2*x^2 + 2*x^3 + 4*x^4 + 5*x^5 + 8*x^6 + 10*x^7 + 15*x^8 + ...
G.f. = 1/q + q^5 + 2*q^11 + 2*q^17 + 4*q^23 + 5*q^29 + 8*q^35 + 10*q^41 + ...
		

Crossrefs

Programs

  • Maple
    A:= series(product( (1-q^(6*n-3))/(1-q^n), n=1..20),q,21): seq(coeff(A,q,i), i=0..20);
  • Mathematica
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3] / (QPochhammer[ x] QPochhammer[ x^6]), {x, 0, n}]; (* Michael Somos, Jan 29 2015 *)
    a[ n_] := SeriesCoefficient[ QPochhammer[ x^3, x^6] / QPochhammer[ x], {x, 0, n}]; (* Michael Somos, Nov 11 2015 *)
    nmax = 50; CoefficientList[Series[Product[1 / ((1-x^k) * (1+x^(3*k))), {k, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Dec 11 2016 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( eta(x^3 + A) / (eta(x + A) * eta(x^6 + A)), n))}; /* Michael Somos, Aug 05 2007 */

Formula

G.f.: product_{n=1..oo} (1-q^(6n-3))/(1-q^n).
Expansion of chi(-x^3) / f(-x) in powers of x where chi(), f() are Ramanujan theta functions. - Michael Somos, Aug 05 2007
Expansion of q^(1/6) * eta(q^3) / (eta(q) * eta(q^6)) in powers of q. - Michael Somos, Aug 05 2007
Euler transform of period 6 sequence [ 1, 1, 0, 1, 1, 1, ...]. - Michael Somos, Aug 05 2007
a(n) ~ sqrt(5) * exp(sqrt(5*n)*Pi/3) / (12*n). - Vaclav Kotesovec, Dec 11 2016