A111932 Expansion of q * (psi(q) * psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function.
1, 2, 1, 4, 6, 2, 8, 8, 1, 12, 12, 4, 14, 16, 6, 16, 18, 2, 20, 24, 8, 24, 24, 8, 31, 28, 1, 32, 30, 12, 32, 32, 12, 36, 48, 4, 38, 40, 14, 48, 42, 16, 44, 48, 6, 48, 48, 16, 57, 62, 18, 56, 54, 2, 72, 64, 20, 60, 60, 24, 62, 64, 8, 64, 84, 24, 68, 72, 24, 96, 72, 8, 74, 76, 31
Offset: 1
Examples
G.f. = q + 2*q^2 + q^3 + 4*q^4 + 6*q^5 + 2*q^6 + 8*q^7 + 8*q^8 + q^9 + ...
References
- Bruce C. Berndt, Ramanujan's Notebooks Part III, Springer-Verlag, see p. 223 Entry 3(iii).
- Nathan J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 87, Eq. (33.2).
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..10000
- Michael Somos, Introduction to Ramanujan theta functions.
- Eric Weisstein's World of Mathematics, Ramanujan Theta Functions.
Crossrefs
Programs
-
Mathematica
a[ n_] := If[ n < 1, 0, Sum[ Mod[n/d, 2] d KroneckerSymbol[ 9, d], { d, Divisors[ n]}]]; (* Michael Somos, Sep 19 2013 *) a[ n_] := SeriesCoefficient[ q (QPochhammer[ q^2] QPochhammer[ q^6])^4 / (QPochhammer[ q] QPochhammer[ q^3])^2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
-
PARI
{a(n) = if( n<1, 0, sumdiv(n, d, (n/d % 2) * d * (d%3>0)))};
-
PARI
{a(n) = local(A, p, e); if( n<1, 0, A = factor(n); prod(k=1, matsize(A)[1], if( p=A[k,1], e=A[k,2]; if( p==2, p^e, if( p==3, 1, (p^(e+1) - 1) / (p-1)))))) };
-
PARI
{a(n) = local(A); if( n<1, 0, n--; A = x * O(x^n); polcoeff( (eta(x^2 + A) * eta(x^6 + A))^4 / (eta(x + A) * eta(x^3 + A))^2, n))};
-
Sage
A = ModularForms( Gamma0(6), 2, prec=50) . basis(); A[1] + 2*A[2]; # Michael Somos, Sep 19 2013
Formula
Expansion of (1/3) * (b(q^2)^2 / b(q))* (c(q^2)^2 / c(q)) in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q^2) * eta(q^6))^4 / (eta(q) * eta(q^3))^2 in powers of q.
Euler transform of period 6 sequence [ 2, -2, 4, -2, 2, -4, ...].
Multiplicative with a(2^e) = 2^e, a(3^e) = 1, a(p^e) = (p^(e+1) - 1) / (p - 1) if p>3.
G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = u*w * (u - 4*v) - v * (v - 4*w)^2.
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = (3/4) (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A131946. - Michael Somos, Sep 19 2013
G.f.: Sum_{k>0} k * x^k * (1 - x^(2*k))^2 / (1 - x^(6*k)) = x * Product_{k>0} ((1 + x^k) * (1 + x^(3*k)))^4 * ((1 - x^k) * (1 - x^(3*k)))^2.
a(3*n) = a(n), a(2*n) = 2 * a(n).
Convolution square of A033762. - Michael Somos, Sep 19 2013
From Amiram Eldar, Sep 12 2023: (Start)
Dirichlet g.f.: (1 - 1/2^s) * (1 - 1/3^(s-1)) * zeta(s-1) * zeta(s).
Sum_{k=1..n} a(k) ~ c * n^2, where c = Pi^2/24 = 0.411233... (A222171). (End)
Comments