cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A186100 Expansion of 2 * a(q^2)^2 - a(q)^2 in powers of q where a() is a cubic AGM theta function.

Original entry on oeis.org

1, -12, -12, -12, -12, -72, -12, -96, -12, -12, -72, -144, -12, -168, -96, -72, -12, -216, -12, -240, -72, -96, -144, -288, -12, -372, -168, -12, -96, -360, -72, -384, -12, -144, -216, -576, -12, -456, -240, -168, -72, -504, -96, -528, -144, -72, -288
Offset: 0

Views

Author

Michael Somos, Feb 12 2011

Keywords

Comments

Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).
Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).

Examples

			G.f. = 1 - 12*q - 12*q^2 - 12*q^3 - 12*q^4 - 72*q^5 - 12*q^6 - 96*q^7 + ...
		

Crossrefs

Programs

  • Mathematica
    a[ n_] := If[ n < 1, Boole[n == 0], -12 DivisorSum[ n, # Boole[ 1 == GCD[#, 6]] &]]; (* Michael Somos, Jul 07 2015 *)
    a[ n_] := SeriesCoefficient[(EllipticTheta[ 4, 0, x] EllipticTheta[ 4, 0, x^3])^2 - 1/2 (EllipticTheta[ 2, 0, x^(1/2)] EllipticTheta[ 2, 0, x^(3/2)])^2, {x, 0, n}]; (* Michael Somos, Jul 07 2015 *)
  • PARI
    {a(n) = if( n<1, n==0, -12 * sumdiv( n, d, d * (1 == gcd( d, 6) ) ) )};
    
  • PARI
    {a(n) = if( n<1, n==0, -12 * direuler( p=2, n, 1 / (1 - X) / (1 - (p>3) * p * X)) [n])};

Formula

Expansion of b(x) * b(x^2) - c(x) * c(x^2) in powers of x where b(), c() are cubic AGM functions.
Expansion of (phi(-x) * phi(-x^3))^2 - 8 * x * (psi(x) * psi(x^3))^2 in powers of x where phi(), psi() are Ramanujan theta functions.
Expansion of (P(q) - 2*P(q^2) - 3*P(q^3) + 6*P(q^6)) / 2 in powers of q where P() is a Ramanujan Eisenstein series. - Michael Somos, Jul 07 2015
a(n) = -12 * A186099(n) if n>0. a(2*n) = a(n). a(2*n + 1) = - A008653(2*n + 1). a(n) = 2 * A008653(n) - A008653(2*n) = A131946(n) - 8 * A111932(n) = A131943(n) - 9 * A121443(n).
a(3*n) = a(n). a(6*n + 5) = -72 * A098098(n).- Michael Somos, Jul 07 2015

A131946 Expansion of (phi(-q) * phi(-q^3))^2 in powers of q where phi() is a Ramanujan theta function.

Original entry on oeis.org

1, -4, 4, -4, 20, -24, 4, -32, 52, -4, 24, -48, 20, -56, 32, -24, 116, -72, 4, -80, 120, -32, 48, -96, 52, -124, 56, -4, 160, -120, 24, -128, 244, -48, 72, -192, 20, -152, 80, -56, 312, -168, 32, -176, 240, -24, 96, -192, 116, -228, 124, -72, 280, -216, 4
Offset: 0

Views

Author

Michael Somos, Jul 30 2007

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = 1 - 4*q + 4*q^2 - 4*q^3 + 20*q^4 - 24*q^5 + 4*q^6 - 32*q^7 + 52*q^8 + ...
		

References

  • N. J. Fine, Basic Hypergeometric Series and Applications, Amer. Math. Soc., 1988; p. 85, Eq. (32.66).

Crossrefs

Programs

  • Magma
    A := Basis( ModularForms( Gamma0(6), 2), 55); A[1] - 4*A[2] + 4*A[3]; /* Michael Somos, Nov 11 2015 */
  • Mathematica
    a[ n_] := SeriesCoefficient[ (EllipticTheta[ 4, 0, q] EllipticTheta[ 4, 0, q^3])^2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
    a[ n_] := SeriesCoefficient[ (QPochhammer[ q] QPochhammer[ q^3])^4 / (QPochhammer[ q^2] QPochhammer[ q^6])^2, {q, 0, n}]; (* Michael Somos, Sep 19 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -4 Sum[ d {0, 1, -1, 0, -1, 1}[[ Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* Michael Somos, Sep 19 2013 *)
    a[ n_] := If[ n < 1, Boole[n == 0], -4 Sum[ n/d {6, 1, -3, -2, -3, 1}[[ Mod[ d, 6] + 1]], {d, Divisors @ n}]]; (* Michael Somos, Sep 19 2013 *)
  • PARI
    {a(n) = my(A); if( n<0, 0, A = x * O(x^n); polcoeff( (eta(x + A) * eta(x^3 + A))^4 / (eta(x^2 + A) * eta(x^6 + A))^2, n))};
    
  • PARI
    {a(n) = if( n<1, n==0, -4 * sumdiv( n, d, d * [0, 1, -1, 0, -1, 1][d%6 + 1]))}; /* Michael Somos, Sep 19 2013 */
    
  • Sage
    A = ModularForms( Gamma0(6), 2, prec=55) . basis();  A[0] - 4*A[1] + 4*A[2]; # Michael Somos, Sep 19 2013
    

Formula

Expansion of (4*a(q^2)^2 - a(q)^2) / 3 in powers of q where a() is a cubic AGM theta function.
Expansion of (b(q)^2 / b(q^2)) * (c(q)^2 / c(q^2)) / 3 in powers of q where b(), c() are cubic AGM theta functions.
Expansion of (eta(q) * eta(q^3))^4 / ( eta(q^2) * eta(q^6))^2 in powers of q.
Euler transform of period 6 sequence [-4, -2, -8, -2, -4, -4, ...].
a(n) = -4 * b(n) where b() is multiplicative with b(2^e) = 3 - 2^(e+1), b(3^e) = 1, b(p^e) = (p^(e+1) - 1) / (p - 1) if p>3. - Michael Somos, Sep 19 2013
G.f. is a period 1 Fourier series which satisfies f(-1 / (6 t)) = 48 (t/i)^2 g(t) where q = exp(2 Pi i t) and g() is the g.f. for A111932. - Michael Somos, Sep 19 2013
G.f.: 1 - 4 * (Sum_{k>0} k * (-x)^k / (1 - x^k) * Kronecker(9, k)) = (theta_3(-x) * theta_3(-x^3))^2.
a(n) = (-1)^n * A034896(n). a(n) = -4 * A131947(n) unless n = 0.
a(3*n) = a(n). a(2*n) = A125514(n). - Michael Somos, Sep 19 2013

A232356 Expansion of 2/9 * c(q) * c(q^2) - q * (psi(q) * psi(q^3))^2 in powers of q where psi() is a Ramanujan theta function and c(q) is a cubic AGM theta function.

Original entry on oeis.org

1, 0, 5, -2, 6, 4, 8, -6, 17, 0, 12, 2, 14, 0, 30, -14, 18, 16, 20, -12, 40, 0, 24, -2, 31, 0, 53, -16, 30, 24, 32, -30, 60, 0, 48, 14, 38, 0, 70, -36, 42, 32, 44, -24, 102, 0, 48, -10, 57, 0, 90, -28, 54, 52, 72, -48, 100, 0, 60, 12, 62, 0, 136, -62, 84, 48
Offset: 1

Views

Author

Michael Somos, Nov 22 2013

Keywords

Comments

Ramanujan theta functions: f(q) (see A121373), phi(q) (A000122), psi(q) (A010054), chi(q) (A000700).
Cubic AGM theta functions: a(q) (see A004016), b(q) (A005928), c(q) (A005882).

Examples

			G.f. = q + 5*q^3 - 2*q^4 + 6*q^5 + 4*q^6 + 8*q^7 - 6*q^8 + 17*q^9 + ...
		

Crossrefs

Programs

  • Magma
    Basis( ModularForms( Gamma0(6), 2), 70) [2];
  • Mathematica
    a[ n_] := If[ n < 1, 0, Sum[ d ( 2 Mod[ d, 2] Boole[Mod[ n/d, 3] > 0] - Mod[ n/d, 2] Boole[ Mod[d, 3] > 0]), {d, Divisors @n}]];
    a[ n_] := SeriesCoefficient[ 2 q (QPochhammer[ q^3] QPochhammer[ q^6])^3 / (QPochhammer[ q] QPochhammer[ q^2]) - q (QPochhammer[ q^2] QPochhammer[ q^6])^4 / (QPochhammer[ q] QPochhammer[ q^3])^2, {q, 0, n}];
  • PARI
    {a(n) = local(A); if( n<1, 0, n--; A=x*O(x^n); polcoeff( 2 * (eta(x^3 + A) * eta(x^6 + A))^3 / (eta(x + A) * eta(x^2 + A)) - (eta(x^2 + A) * eta(x^6 + A))^4 / (eta(x + A) * eta(x^3 + A))^2, n))};
    
  • Sage
    ModularForms( Gamma0(6), 2, prec=70).1;
    

Formula

a(n) = 2 * A121443(n) - A111932(n). a(2*n) = -2 * A229615(n). a(12*n + 2) = a(12*n + 10) = 0.
a(n) = A123532(n) + 7 * A229615(n). a(3*n + 2) = 6 * A232343(n-1). a(6*n + 5) = 6 * A098098(n). a(12*n + 4) = -2 * A144614(n). a(12*n + 6) = 4 * A008438(n). a(12*n + 8) = -6 * A033686(n). - Michael Somos, May 23 2014

A121456 Expansion of q*(psi(-q)*psi(-q^3))^2 in powers of q where psi() is a Ramanujan theta function.

Original entry on oeis.org

1, -2, 1, -4, 6, -2, 8, -8, 1, -12, 12, -4, 14, -16, 6, -16, 18, -2, 20, -24, 8, -24, 24, -8, 31, -28, 1, -32, 30, -12, 32, -32, 12, -36, 48, -4, 38, -40, 14, -48, 42, -16, 44, -48, 6, -48, 48, -16, 57, -62, 18, -56, 54, -2, 72, -64, 20, -60, 60, -24, 62, -64, 8, -64, 84, -24, 68, -72, 24, -96, 72, -8, 74, -76, 31, -80
Offset: 1

Views

Author

Michael Somos, Jul 30 2006

Keywords

Comments

Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700).

Crossrefs

Programs

  • Mathematica
    eta[q_]:= q^(1/24)*QPochhammer[q];  a[n_]:= SeriesCoefficient[(eta[q] *eta[q^3]*eta[q^4]*eta[q^12])^2/(eta[q^2]*eta[q^6])^2, {q, 0, n}]; Table[a[n], {n, 1, 50}] (* G. C. Greubel, Mar 07 2018 *)
  • PARI
    {a(n)=if(n<1, 0, -(-1)^n*sumdiv(n,d,(n/d%2)*d*(d%3>0)))}

Formula

Expansion of (eta(q)*eta(q^3)*eta(q^4)*eta(q^12))^2/(eta(q^2)*eta(q^6))^2 in powers of q.
Euler transform of period 12 sequence [ -2, 0, -4, -2, -2, 0, -2, -2, -4, 0, -2, -4, ...].
Multiplicative with a(2^e) = -(2^e) if e>0, a(3^e) = 1, a(p^e) = (p^(e+1)-1)/(p-1) if p>3.
a(3*n)=a(n), a(4n+2)=-2*a(2*n+1).
a(n) = (-1)^(n+1)*A111932(n).
Dirichlet g.f.: (1 - 5/2^s + 1/2^(2*s-2) ) * (1 - 1/3^(s-1)) * zeta(s-1) * zeta(s). - Amiram Eldar, Sep 12 2023

A224976 L.g.f.: log( 1 + Sum_{n>=1} x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2) ) = Sum_{n>=1} a(n)*x^n/n.

Original entry on oeis.org

1, 1, -2, 1, 6, -8, 8, 1, -11, 6, 12, -20, 14, 8, -12, 1, 18, -35, 20, 6, -16, 12, 24, -44, 31, 14, -38, 8, 30, -48, 32, 1, -24, 18, 48, -83, 38, 20, -28, 6, 42, -64, 44, 12, -66, 24, 48, -92, 57, 31, -36, 14, 54, -116, 72, 8, -40, 30, 60, -120, 62, 32, -88, 1, 84, -96, 68, 18, -48, 48, 72
Offset: 1

Views

Author

Paul D. Hanna, Apr 21 2013

Keywords

Comments

Compare to: -log( 1 + Sum_{n>=1} (-1)^n*(x^(n*(3*n-1)/2) + x^(n*(3*n+1)/2)) ) = Sum_{n>=1} sigma(n)*x^n/n.

Examples

			L.g.f.: A(x) = x + x^2/2 - 2*x^3/3 + x^4/4 + 6*x^5/5 - 8*x^6/6 + 8*x^7/7 + x^8/8 - 11*x^9/9 + 6*x^10/10 + 12*x^11/11 - 20*x^12/12 +...
where
exp(A(x)) = 1 + x + x^2 + x^5 + x^7 + x^12 + x^15 + x^22 + x^26 + x^35 + x^40 + x^51 + x^57 + x^70 + x^77 +...+ x^A001318(n) +...
		

Crossrefs

Cf. A111932, A001318, A000203 (sigma).

Programs

  • PARI
    {a(n)=n*polcoeff(log(1+sum(k=1,n,x^(k*(3*k-1)/2) + x^(k*(3*k+1)/2))+x*O(x^n)),n)}
    for(n=1,80,print1(a(n),", "))

Formula

a(n) = 2*A111932(n) - sigma(n), where sigma(n) is the sum of divisors of n.
a(n) = 1 iff n = 2^k for k>=0.
L.g.f.: log(1 + Sum_{n>=1} x^A001318(n)) = Sum_{n>=1} a(n)*x^n/n, where A001318 are the generalized pentagonal numbers.
Showing 1-5 of 5 results.