cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131992 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4.

Original entry on oeis.org

31, 121, 781, 2801, 16105, 30941, 88741, 137561, 292561, 732541, 954305, 1926221, 2896405, 3500201, 4985761, 8042221, 12326281, 14076605, 20456441, 25774705, 28792661, 39449441, 48037081, 63455221, 89451461, 105101005, 113654321
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Thébault shows that a(2) = 121 is the only square in this sequence. - Charles R Greathouse IV, Jul 23 2013
Giovanni Resta has found that 28792661 is the first Sophie Germain prime of this form (and actually of the form p = (n^m-1)/(n-1) for any p-1 > n, m > 1). - M. F. Hasler, Mar 03 2020

Examples

			a(1) = 31 because prime(1) = 2 and 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31.
		

References

  • Victor Thébault, Curiosités arithmétiques, Mathesis 62 (1953), pp. 120-129.

Crossrefs

Equals A053699 restricted to prime indices. Subsequence of primes is A190527.

Programs

Formula

a(n) = 1 + A131991(n)*A000040(n).
a(n) = (A050997(n) - 1)/A006093(n).
a(n) = A000203(prime(n)^4). - R. J. Mathar, Mar 15 2018
a(n) = (prime(n)^5 - 1)/(prime(n) - 1) = A053699(prime(n)). (This is also meant by the 2nd formula.) - M. F. Hasler, Mar 03 2020