A006093
a(n) = prime(n) - 1.
Original entry on oeis.org
1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270
Offset: 1
- Archimedeans Problems Drive, Eureka, 40 (1979), 28.
- Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
- M. Gardner, The Colossal Book of Mathematics, pp. 31, W. W. Norton & Co., NY, 2001.
- M. Gardner, Mathematical Circus, pp. 251-2, Alfred A. Knopf, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Thomas F. Bloom, Unit fractions with shifted prime denominators, arXiv:2305.02689 [math.NT], 2023.
- R. P. Boas & N. J. A. Sloane, Correspondence, 1974
- Harvey Dubner, Generalized Fermat primes, J. Recreational Math. 18.4 (1985-1986), 279. (Annotated scanned copy)
- Armel Mercier, Problem E 3065, American Mathematical Monthly, 1984, p. 649.
- Armel Mercier, S. K. Rangarajan, J. C. Binz and Dan Marcus, Problem E 3065, American Mathematical Monthly, No. 4, 1987, pp. 378.
- Poo-Sung Park, Additive uniqueness of PRIMES-1 for multiplicative functions, arXiv:1708.03037 [math.NT], 2017.
- J. R. Rickard and J. J. Hitchcock, Problem Drive 4, Archimedeans Problems Drive, Eureka, 40 (1979), 28-29, 40. (Annotated scanned copy)
- Index entries for sequences generated by sieves
a(n) = K(n, 1) and
A034693(K(n, 1)) = 1 for all n. The subscript n refers to this sequence and K(n, 1) is the index in
A034693. -
Labos Elemer
-
Filtered([1..280],IsPrime)-1; # Muniru A Asiru, Nov 25 2018
-
a006093 = (subtract 1) . a000040 -- Reinhard Zumkeller, Mar 06 2012
-
[NthPrime(n)-1: n in [1..100]]; // Vincenzo Librandi, Nov 17 2015
-
for n from 2 to 271 do if (n! mod n^2 = n*(n-1) and (n<>4) then print(n-1) fi od; # Gary Detlefs, Sep 10 2010
# alternative
A006093 := proc(n)
ithprime(n)-1 ;
end proc:
seq(A006093(n),n=1..100) ; # R. J. Mathar, Feb 06 2019
-
Table[Prime[n] - 1, {n, 1, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2008 *)
a[ n_] := If[ n < 1, 0, -1 + Prime @ n] (* Michael Somos, Jul 17 2011 *)
Prime[Range[60]] - 1 (* Alonso del Arte, Oct 26 2013 *)
-
isA006093(n) = isprime(n+1) \\ Michael B. Porter, Apr 09 2010
-
A006093(n) = prime(n)-1 \\ Michael B. Porter, Apr 09 2010
-
\\ Sieve as described in Rainer Rosenthal's comment.
m=270;s=vector(m);for(i=1,m,for(j=i,m,k=i*j+i+j;if(k<=m,s[k]=1)));for(k=1,m,if(s[k]==0,print1(k,", "))); \\ Hugo Pfoertner, May 14 2019
-
from sympy import prime
for n in range(1,100): print(prime(n)-1, end=', ') # Stefano Spezia, Nov 30 2018
Obfuscating comments removed by
Joerg Arndt, Mar 11 2010
A008864
a(n) = prime(n) + 1.
Original entry on oeis.org
3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1
- C. W. Trigg, Problem #1210, Series Formation, J. Rec. Math., 15 (1982), 221-222.
-
a008864 = (+ 1) . a000040
-- Reinhard Zumkeller, Sep 04 2012, Oct 08 2012
-
[NthPrime(n)+1: n in [1..70]]; // Vincenzo Librandi, Jul 30 2016
-
A008864:=n->ithprime(n)+1; seq(A008864(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2014
-
Prime[Range[70]]+1 (* Vladimir Joseph Stephan Orlovsky, Apr 27 2008 *)
-
forprime(p=2,1e3,print1(p+1", ")) \\ Charles R Greathouse IV, Jun 16 2011
-
A008864(n) = (1+prime(n)); \\ Antti Karttunen, Mar 14 2021
-
[nth_prime(n) +1 for n in (1..70)] # G. C. Greubel, May 20 2019
A030514
a(n) = prime(n)^4.
Original entry on oeis.org
16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1
-
a030514 = (^ 4) . a000040
a030514_list = map (^ 4) a000040_list
-- Reinhard Zumkeller, Jun 03 2015
-
[NthPrime(n)^4: n in [1..100] ]; // Vincenzo Librandi, Apr 22 2011
-
map(p -> p^4, select(isprime,[2,seq(2*i+1,i=1..100)])); # Robert Israel, Aug 29 2014
-
Array[Prime[#]^4 &, 5!] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
-
a(n)=prime(n)^4 \\ Charles R Greathouse IV, Mar 21 2013
-
[p**4 for p in prime_range(100)]
# Zerinvary Lajos, May 15 2007
A050997
Fifth powers of primes.
Original entry on oeis.org
32, 243, 3125, 16807, 161051, 371293, 1419857, 2476099, 6436343, 20511149, 28629151, 69343957, 115856201, 147008443, 229345007, 418195493, 714924299, 844596301, 1350125107, 1804229351, 2073071593, 3077056399, 3939040643, 5584059449, 8587340257, 10510100501
Offset: 1
A060800
a(n) = p^2 + p + 1 where p runs through the primes.
Original entry on oeis.org
7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221
Offset: 1
a(3) = 31 because 5^2 + 5 + 1 = 31.
-
[p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014
-
A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)):
seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011
-
#^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)
-
{ n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009
More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
A131991
a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3.
Original entry on oeis.org
15, 40, 156, 400, 1464, 2380, 5220, 7240, 12720, 25260, 30784, 52060, 70644, 81400, 106080, 151740, 208920, 230764, 305320, 363024, 394420, 499360, 578760, 712980, 922180, 1040604, 1103440, 1236600, 1307020, 1455780, 2064640, 2265384
Offset: 1
a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
A131993
1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.
Original entry on oeis.org
63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724
Offset: 1
-
[1+(&+[NthPrime(n)^(k): k in [1..5]]): n in [1..100]]; // Berselli - Librandi, Apr 20 2011
-
Total[#^Range[0,5]]&/@Prime[Range[30]] (* Harvey P. Dale, Apr 20 2011 *)
A190527
Primes of the form p^4 + p^3 + p^2 + p + 1, where p is prime.
Original entry on oeis.org
31, 2801, 30941, 88741, 292561, 732541, 3500201, 28792661, 39449441, 48037081, 262209281, 1394714501, 2666986681, 3276517921, 4802611441, 5908670381, 12936304421, 16656709681, 19408913261, 24903325661, 37226181521, 43713558101, 52753304641, 64141071121, 96427561501, 100648118041
Offset: 1
a(3) = 30941 = 11111_13 = 13^4 + 13^3 + 13^2 + 13^1 + 1 is prime.
Subsequence of
A088548 (primes n^4 + ... + 1) and
A085104 ("Brazilian" primes, of the form 1 + n + n^2 + ... + n^k).
-
[p: p in PrimesUpTo(600) | IsPrime(p) where p is p^4 +p^3+p^2+p+1]; // Vincenzo Librandi, May 06 2017
-
a190527[n_] := Select[Map[(Prime[#]^5-1)/(Prime[#]-1)&, Range[n]], PrimeQ]
a190527[100] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
Select[#^4 + #^3 + #^2 + # + 1 &/@Prime[Range[100]], PrimeQ] (* Vincenzo Librandi, May 06 2017 *)
-
[q|p<-primes(100),ispseudoprime(q=(p^5-1)\(p-1))]
A190527_vec(N)=[(p^5-1)\(p-1)|p<-A065509_vec(N)] \\ M. F. Hasler, Mar 03 2020
A319076
Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0
The corner of the square array is as follows:
A126646 A003462 A003463 A023000 A016123 A091030 A091045
A000012 1, 1, 1, 1, 1, 1, 1, ...
A008864 3, 4, 6, 8, 12, 14, 18, ...
A060800 7, 13, 31, 57, 133, 183, 307, ...
A131991 15, 40, 156, 400, 1464, 2380, 5220, ...
A131992 31, 121, 781, 2801, 16105, 30941, 88741, ...
A131993 63, 364, 3906, 19608, 177156, 402234, 1508598, ...
....... 127, 1093, 19531, 137257, 1948717, 5229043, 25646167, ...
....... 255, 3280, 97656, 960800, 21435888, 67977560, 435984840, ...
....... 511, 9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
Columns 1-15:
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
A237361
Numbers n of the form n = Phi_5(p) (for prime p) such that Phi_5(n) is also prime.
Original entry on oeis.org
4435770414505, 30562950873505, 32152890387805, 60700878873905, 936037312559305, 1279875801783805, 3780430049614405, 6055088920612205, 10370026462436905, 12160851727605005, 16956369914710105, 18746881534017005, 20813869508536105, 30740855019988405
Offset: 1
4435770414505 = 1451^4+1451^3+1451^2+1451+1 (1451 is prime), and 4435770414505^4+4435770414505^3+4435770414505^2+4435770414505+1 = 387147304469214558406348338836395337085545589397781 is prime. Thus, 4435770414505 is a member of this sequence.
-
forprime(p=2,1e7, k=polcyclo(5,p) ; if( ispseudoprime(polcyclo(5,k)), print1(k", "))) \\ Charles R Greathouse IV, Feb 07 2014
-
import sympy
from sympy import isprime
{print(n**4+n**3+n**2+n+1) for n in range(10**5) if isprime(n) and isprime((n**4+n**3+n**2+n+1)**4+(n**4+n**3+n**2+n+1)**3+(n**4+n**3+n**2+n+1)**2+(n**4+n**3+n**2+n+1)+1)}
Showing 1-10 of 10 results.
Comments