A006093
a(n) = prime(n) - 1.
Original entry on oeis.org
1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270
Offset: 1
- Archimedeans Problems Drive, Eureka, 40 (1979), 28.
- Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
- M. Gardner, The Colossal Book of Mathematics, pp. 31, W. W. Norton & Co., NY, 2001.
- M. Gardner, Mathematical Circus, pp. 251-2, Alfred A. Knopf, NY, 1979.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Thomas F. Bloom, Unit fractions with shifted prime denominators, arXiv:2305.02689 [math.NT], 2023.
- R. P. Boas & N. J. A. Sloane, Correspondence, 1974
- Harvey Dubner, Generalized Fermat primes, J. Recreational Math. 18.4 (1985-1986), 279. (Annotated scanned copy)
- Armel Mercier, Problem E 3065, American Mathematical Monthly, 1984, p. 649.
- Armel Mercier, S. K. Rangarajan, J. C. Binz and Dan Marcus, Problem E 3065, American Mathematical Monthly, No. 4, 1987, pp. 378.
- Poo-Sung Park, Additive uniqueness of PRIMES-1 for multiplicative functions, arXiv:1708.03037 [math.NT], 2017.
- J. R. Rickard and J. J. Hitchcock, Problem Drive 4, Archimedeans Problems Drive, Eureka, 40 (1979), 28-29, 40. (Annotated scanned copy)
- Index entries for sequences generated by sieves
a(n) = K(n, 1) and
A034693(K(n, 1)) = 1 for all n. The subscript n refers to this sequence and K(n, 1) is the index in
A034693. -
Labos Elemer
-
Filtered([1..280],IsPrime)-1; # Muniru A Asiru, Nov 25 2018
-
a006093 = (subtract 1) . a000040 -- Reinhard Zumkeller, Mar 06 2012
-
[NthPrime(n)-1: n in [1..100]]; // Vincenzo Librandi, Nov 17 2015
-
for n from 2 to 271 do if (n! mod n^2 = n*(n-1) and (n<>4) then print(n-1) fi od; # Gary Detlefs, Sep 10 2010
# alternative
A006093 := proc(n)
ithprime(n)-1 ;
end proc:
seq(A006093(n),n=1..100) ; # R. J. Mathar, Feb 06 2019
-
Table[Prime[n] - 1, {n, 1, 30}] (* Vladimir Joseph Stephan Orlovsky, Apr 27 2008 *)
a[ n_] := If[ n < 1, 0, -1 + Prime @ n] (* Michael Somos, Jul 17 2011 *)
Prime[Range[60]] - 1 (* Alonso del Arte, Oct 26 2013 *)
-
isA006093(n) = isprime(n+1) \\ Michael B. Porter, Apr 09 2010
-
A006093(n) = prime(n)-1 \\ Michael B. Porter, Apr 09 2010
-
\\ Sieve as described in Rainer Rosenthal's comment.
m=270;s=vector(m);for(i=1,m,for(j=i,m,k=i*j+i+j;if(k<=m,s[k]=1)));for(k=1,m,if(s[k]==0,print1(k,", "))); \\ Hugo Pfoertner, May 14 2019
-
from sympy import prime
for n in range(1,100): print(prime(n)-1, end=', ') # Stefano Spezia, Nov 30 2018
Obfuscating comments removed by
Joerg Arndt, Mar 11 2010
A008864
a(n) = prime(n) + 1.
Original entry on oeis.org
3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1
- C. W. Trigg, Problem #1210, Series Formation, J. Rec. Math., 15 (1982), 221-222.
-
a008864 = (+ 1) . a000040
-- Reinhard Zumkeller, Sep 04 2012, Oct 08 2012
-
[NthPrime(n)+1: n in [1..70]]; // Vincenzo Librandi, Jul 30 2016
-
A008864:=n->ithprime(n)+1; seq(A008864(n), n=1..50); # Wesley Ivan Hurt, Apr 11 2014
-
Prime[Range[70]]+1 (* Vladimir Joseph Stephan Orlovsky, Apr 27 2008 *)
-
forprime(p=2,1e3,print1(p+1", ")) \\ Charles R Greathouse IV, Jun 16 2011
-
A008864(n) = (1+prime(n)); \\ Antti Karttunen, Mar 14 2021
-
[nth_prime(n) +1 for n in (1..70)] # G. C. Greubel, May 20 2019
A030078
Cubes of primes.
Original entry on oeis.org
8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1
a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
- Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.
Other sequences that are k-th powers of primes are:
A000040 (k=1),
A001248 (k=2), this sequence (k=3),
A030514 (k=4),
A050997 (k=5),
A030516 (k=6),
A092759 (k=7),
A179645 (k=8),
A179665 (k=9),
A030629 (k=10),
A079395 (k=11),
A030631 (k=12),
A138031 (k=13),
A030635 (k=16),
A138032 (k=17),
A030637 (k=18).
A030514
a(n) = prime(n)^4.
Original entry on oeis.org
16, 81, 625, 2401, 14641, 28561, 83521, 130321, 279841, 707281, 923521, 1874161, 2825761, 3418801, 4879681, 7890481, 12117361, 13845841, 20151121, 25411681, 28398241, 38950081, 47458321, 62742241, 88529281, 104060401, 112550881, 131079601, 141158161
Offset: 1
-
a030514 = (^ 4) . a000040
a030514_list = map (^ 4) a000040_list
-- Reinhard Zumkeller, Jun 03 2015
-
[NthPrime(n)^4: n in [1..100] ]; // Vincenzo Librandi, Apr 22 2011
-
map(p -> p^4, select(isprime,[2,seq(2*i+1,i=1..100)])); # Robert Israel, Aug 29 2014
-
Array[Prime[#]^4 &, 5!] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
-
a(n)=prime(n)^4 \\ Charles R Greathouse IV, Mar 21 2013
-
[p**4 for p in prime_range(100)]
# Zerinvary Lajos, May 15 2007
A060800
a(n) = p^2 + p + 1 where p runs through the primes.
Original entry on oeis.org
7, 13, 31, 57, 133, 183, 307, 381, 553, 871, 993, 1407, 1723, 1893, 2257, 2863, 3541, 3783, 4557, 5113, 5403, 6321, 6973, 8011, 9507, 10303, 10713, 11557, 11991, 12883, 16257, 17293, 18907, 19461, 22351, 22953, 24807, 26733, 28057, 30103, 32221
Offset: 1
a(3) = 31 because 5^2 + 5 + 1 = 31.
-
[p^2+p+1: p in PrimesUpTo(200)]; // Vincenzo Librandi, Mar 20 2014
-
A060800:= n -> map (p -> p^(2)+p+1, ithprime(n)):
seq (A060800(n), n=1..41); # Jani Melik, Jan 25 2011
-
#^2 + # + 1&/@Prime[Range[200]] (* Vincenzo Librandi, Mar 20 2014 *)
-
{ n=0; forprime (p=2, prime(1000), write("b060800.txt", n++, " ", p^2 + p + 1); ) } \\ Harry J. Smith, Jul 13 2009
More terms from Larry Reeves (larryr(AT)acm.org), May 03 2001
A131992
a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4.
Original entry on oeis.org
31, 121, 781, 2801, 16105, 30941, 88741, 137561, 292561, 732541, 954305, 1926221, 2896405, 3500201, 4985761, 8042221, 12326281, 14076605, 20456441, 25774705, 28792661, 39449441, 48037081, 63455221, 89451461, 105101005, 113654321
Offset: 1
a(1) = 31 because prime(1) = 2 and 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31.
- Victor Thébault, Curiosités arithmétiques, Mathesis 62 (1953), pp. 120-129.
Equals
A053699 restricted to prime indices. Subsequence of primes is
A190527.
A131993
1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.
Original entry on oeis.org
63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724
Offset: 1
-
[1+(&+[NthPrime(n)^(k): k in [1..5]]): n in [1..100]]; // Berselli - Librandi, Apr 20 2011
-
Total[#^Range[0,5]]&/@Prime[Range[30]] (* Harvey P. Dale, Apr 20 2011 *)
A319076
Square array T(n,k) read by antidiagonal upwards in which column k lists the partial sums of the powers of the k-th prime, n >= 0, k >= 1.
Original entry on oeis.org
1, 3, 1, 7, 4, 1, 15, 13, 6, 1, 31, 40, 31, 8, 1, 63, 121, 156, 57, 12, 1, 127, 364, 781, 400, 133, 14, 1, 255, 1093, 3906, 2801, 1464, 183, 18, 1, 511, 3280, 19531, 19608, 16105, 2380, 307, 20, 1, 1023, 9841, 97656, 137257, 177156, 30941, 5220, 381, 24, 1, 2047, 29524, 488281, 960800, 1948717
Offset: 0
The corner of the square array is as follows:
A126646 A003462 A003463 A023000 A016123 A091030 A091045
A000012 1, 1, 1, 1, 1, 1, 1, ...
A008864 3, 4, 6, 8, 12, 14, 18, ...
A060800 7, 13, 31, 57, 133, 183, 307, ...
A131991 15, 40, 156, 400, 1464, 2380, 5220, ...
A131992 31, 121, 781, 2801, 16105, 30941, 88741, ...
A131993 63, 364, 3906, 19608, 177156, 402234, 1508598, ...
....... 127, 1093, 19531, 137257, 1948717, 5229043, 25646167, ...
....... 255, 3280, 97656, 960800, 21435888, 67977560, 435984840, ...
....... 511, 9841, 488281, 6725601, 235794769, 883708281, 7411742281, ...
...
Columns 1-15:
A126646,
A003462,
A003463,
A023000,
A016123,
A091030,
A091045,
A218722,
A218726,
A218732,
A218734,
A218740,
A218744,
A218746,
A218750.
Cf.
A000079,
A000244,
A000351,
A000420,
A001020,
A001022,
A001026,
A001029,
A009967,
A009973,
A009975,
A009981,
A009985,
A009987,
A009991.
Showing 1-8 of 8 results.
Comments