cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 20 results. Next

A001248 Squares of primes.

Original entry on oeis.org

4, 9, 25, 49, 121, 169, 289, 361, 529, 841, 961, 1369, 1681, 1849, 2209, 2809, 3481, 3721, 4489, 5041, 5329, 6241, 6889, 7921, 9409, 10201, 10609, 11449, 11881, 12769, 16129, 17161, 18769, 19321, 22201, 22801, 24649, 26569, 27889, 29929, 32041, 32761, 36481
Offset: 1

Views

Author

Keywords

Comments

Also 4, together with numbers n such that Sum_{d|n}(-1)^d = -A048272(n) = -3. - Benoit Cloitre, Apr 14 2002
Also, all solutions to the equation sigma(x) + phi(x) = 2x + 1. - Farideh Firoozbakht, Feb 02 2005
Unique numbers having 3 divisors (1, their square root, themselves). - Alexandre Wajnberg, Jan 15 2006
Smallest (or first) new number deleted at the n-th step in an Eratosthenes sieve. - Lekraj Beedassy, Aug 17 2006
Subsequence of semiprimes A001358. - Lekraj Beedassy, Sep 06 2006
Integers having only 1 factor other than 1 and the number itself. Every number in the sequence is a multiple of 1 factor other than 1 and the number itself. 4 : 2 is the only factor other than 1 and 4; 9 : 3 is the only factor other than 1 and 9; and so on. - Rachit Agrawal (rachit_agrawal(AT)daiict.ac.in), Oct 23 2007
The n-th number with p divisors is equal to the n-th prime raised to power p-1, where p is prime. - Omar E. Pol, May 06 2008
There are 2 Abelian groups of order p^2 (C_p^2 and C_p x C_p) and no non-Abelian group. - Franz Vrabec, Sep 11 2008
Also numbers n such that phi(n) = n - sqrt(n). - Michel Lagneau, May 25 2012
For n > 1, n is the sum of numbers from A006254(n-1) to A168565(n-1). - Vicente Izquierdo Gomez, Dec 01 2012
A078898(a(n)) = 2. - Reinhard Zumkeller, Apr 06 2015
Let r(n) = (a(n) - 1)/(a(n) + 1); then Product_{n>=1} r(n) = (3/5) * (4/5) * (12/13) * (24/25) * (60/61) * ... = 2/5. - Dimitris Valianatos, Feb 26 2019
Numbers k such that A051709(k) = 1. - Jianing Song, Jun 27 2021

Crossrefs

Programs

Formula

n such that A062799(n) = 2. - Benoit Cloitre, Apr 06 2002
A000005(a(n)^(k-1)) = A005408(k) for all k>0. - Reinhard Zumkeller, Mar 04 2007
a(n) = A000040(n)^(3-1)=A000040(n)^2, where 3 is the number of divisors of a(n). - Omar E. Pol, May 06 2008
A000005(a(n)) = 3 or A002033(a(n)) = 2. - Juri-Stepan Gerasimov, Oct 10 2009
A033273(a(n)) = 3. - Juri-Stepan Gerasimov, Dec 07 2009
For n > 2: (a(n) + 17) mod 12 = 6. - Reinhard Zumkeller, May 12 2010
A192134(A095874(a(n))) = A005722(n) + 1. - Reinhard Zumkeller, Jun 26 2011
For n > 2: a(n) = 1 (mod 24). - Zak Seidov, Dec 07 2011
A211110(a(n)) = 2. - Reinhard Zumkeller, Apr 02 2012
a(n) = A087112(n,n). - Reinhard Zumkeller, Nov 25 2012
a(n) = prime(n)^2. - Jon E. Schoenfield, Mar 29 2015
Product_{n>=1} a(n)/(a(n)-1) = Pi^2/6. - Daniel Suteu, Feb 06 2017
Sum_{n>=1} 1/a(n) = P(2) = 0.4522474200... (A085548). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(4) = 15/Pi^2 (A082020).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(2) = 6/Pi^2 (A059956). (End)

A006093 a(n) = prime(n) - 1.

Original entry on oeis.org

1, 2, 4, 6, 10, 12, 16, 18, 22, 28, 30, 36, 40, 42, 46, 52, 58, 60, 66, 70, 72, 78, 82, 88, 96, 100, 102, 106, 108, 112, 126, 130, 136, 138, 148, 150, 156, 162, 166, 172, 178, 180, 190, 192, 196, 198, 210, 222, 226, 228, 232, 238, 240, 250, 256, 262, 268, 270
Offset: 1

Views

Author

Keywords

Comments

These are also the numbers that cannot be written as i*j + i + j (i,j >= 1). - Rainer Rosenthal, Jun 24 2001; Henry Bottomley, Jul 06 2002
The values of k for which Sum_{j=0..n} (-1)^j*binomial(k, j)*binomial(k-1-j, n-j)/(j+1) produces an integer for all n such that n < k. Setting k=10 yields [0, 1, 4, 11, 19, 23, 19, 11, 4, 1, 0] for n = [-1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9], so 10 is in the sequence. Setting k=3 yields [0, 1, 1/2, 1/2] for n = [-1, 0, 1, 2], so 3 is not in the sequence. - Dug Eichelberger (dug(AT)mit.edu), May 14 2001
n such that x^n + x^(n-1) + x^(n-2) + ... + x + 1 is irreducible. - Robert G. Wilson v, Jun 22 2002
Records for Euler totient function phi.
Together with 0, n such that (n+1) divides (n!+1). - Benoit Cloitre, Aug 20 2002; corrected by Charles R Greathouse IV, Apr 20 2010
n such that phi(n^2) = phi(n^2 + n). - Jon Perry, Feb 19 2004
Numbers having only the trivial perfect partition consisting of a(n) 1's. - Lekraj Beedassy, Jul 23 2006
Numbers n such that the sequence {binomial coefficient C(k,n), k >= n } contains exactly one prime. - Artur Jasinski, Dec 02 2007
Record values of A143201: a(n) = A143201(A001747(n+1)) for n > 1. - Reinhard Zumkeller, Aug 12 2008
From Reinhard Zumkeller, Jul 10 2009: (Start)
The first N terms can be generated by the following sieving process:
start with {1, 2, 3, 4, ..., N - 1, N};
for i := 1 until SQRT(N) do
(if (i is not striked out) then
(for j := 2 * i + 1 step i + 1 until N do
(strike j from the list)));
remaining numbers = {a(n): a(n) <= N}. (End)
a(n) = partial sums of A075526(n-1) = Sum_{1..n} A075526(n-1) = Sum_{1..n} (A008578(n+1) - A008578(n)) = Sum_{1..n} (A158611(n+2) - A158611(n+1)) for n >= 1. - Jaroslav Krizek, Aug 04 2009
A171400(a(n)) = 1 for n <> 2: subsequence of A171401, except for a(2) = 2. - Reinhard Zumkeller, Dec 08 2009
Numerator of (1 - 1/prime(n)). - Juri-Stepan Gerasimov, Jun 05 2010
Numbers n such that A002322(n+1) = n. This statement is stronger than repeating the property of the entries in A002322, because it also says in reciprocity that this sequence here contains no numbers beyond the Carmichael numbers with that property. - Michel Lagneau, Dec 12 2010
a(n) = A192134(A095874(A000040(n))); subsequence of A192133. - Reinhard Zumkeller, Jun 26 2011
prime(a(n)) + prime(k) < prime(a(k) + k) for at least one k <= a(n): A212210(a(n),k) < 0. - Reinhard Zumkeller, May 05 2012
Except for the first term, numbers n such that the sum of first n natural numbers does not divide the product of first n natural numbers; that is, n*(n + 1)/2 does not divide n!. - Jayanta Basu, Apr 24 2013
BigOmega(a(n)) equals BigOmega(a(n)*(a(n) + 1)/2), where BigOmega = A001222. Rationale: BigOmega of the product on the right hand side factorizes as BigOmega(a/2) + Bigomega(a+1) = BigOmega(a/2) + 1 because a/2 and a + 1 are coprime, because BigOmega is additive, and because a + 1 is prime. Furthermore Bigomega(a/2) = Bigomega(a) - 1 because essentially all 'a' are even. - Irina Gerasimova, Jun 06 2013
Record values of A060681. - Omar E. Pol, Oct 26 2013
Deficiency of n-th prime. - Omar E. Pol, Jan 30 2014
Conjecture: All the sums Sum_{k=s..t} 1/a(k) with 1 <= s <= t are pairwise distinct. In general, for any integers d >= -1 and m > 0, if Sum_{k=i..j} 1/(prime(k)+d)^m = Sum_{k=s..t} 1/(prime(k)+d)^m with 0 < i <= j and 0 < s <= t then we must have (i,j) = (s,t), unless d = m = 1 and {(i,j),(s,t)} = {(4,4),(8,10)} or {(4,7),(5,10)}. (Note that 1/(prime(8)+1)+1/(prime(9)+1)+1/(prime(10)+1) = 1/(prime(4)+1) and Sum_{k=5..10} 1/(prime(k)+1) = 1/(prime(4)+1) + Sum_{k=5..7} 1/(prime(k)+1).) - Zhi-Wei Sun, Sep 09 2015
Numbers n such that (prime(i)^n + n) is divisible by (n+1), for all i >= 1, except when prime(i) = n+1. - Richard R. Forberg, Aug 11 2016
a(n) is the period of Fubini numbers (A000670) over the n-th prime. - Federico Provvedi, Nov 28 2020

References

  • Archimedeans Problems Drive, Eureka, 40 (1979), 28.
  • Harvey Dubner, Generalized Fermat primes, J. Recreational Math., 18 (1985): 279-280.
  • M. Gardner, The Colossal Book of Mathematics, pp. 31, W. W. Norton & Co., NY, 2001.
  • M. Gardner, Mathematical Circus, pp. 251-2, Alfred A. Knopf, NY, 1979.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

a(n) = K(n, 1) and A034693(K(n, 1)) = 1 for all n. The subscript n refers to this sequence and K(n, 1) is the index in A034693. - Labos Elemer
Cf. A000040, A034694. Different from A075728.
Complement of A072668 (composite numbers minus 1), A072670(a(n))=0.
Essentially the same as A039915.
Cf. A101301 (partial sums), A005867 (partial products).
Column 1 of the following arrays/triangles: A087738, A249741, A352707, A378979, A379010.
The last diagonal of A162619, and of A174996, the first diagonal in A131424.
Row lengths of irregular triangles A086145, A124223, A212157.

Programs

Formula

a(n) = (p-1)! mod p where p is the n-th prime, by Wilson's theorem. - Jonathan Sondow, Jul 13 2010
a(n) = A000010(prime(n)) = A000010(A006005(n)). - Antti Karttunen, Dec 16 2012
a(n) = A005867(n+1)/A005867(n). - Eric Desbiaux, May 07 2013
a(n) = A000040(n) - 1. - Omar E. Pol, Oct 26 2013
a(n) = A033879(A000040(n)). - Omar E. Pol, Jan 30 2014

Extensions

Correction for change of offset in A158611 and A008578 in Aug 2009 Jaroslav Krizek, Jan 27 2010
Obfuscating comments removed by Joerg Arndt, Mar 11 2010
Edited by Charles R Greathouse IV, Apr 20 2010

A008864 a(n) = prime(n) + 1.

Original entry on oeis.org

3, 4, 6, 8, 12, 14, 18, 20, 24, 30, 32, 38, 42, 44, 48, 54, 60, 62, 68, 72, 74, 80, 84, 90, 98, 102, 104, 108, 110, 114, 128, 132, 138, 140, 150, 152, 158, 164, 168, 174, 180, 182, 192, 194, 198, 200, 212, 224, 228, 230, 234, 240, 242, 252, 258, 264, 270, 272, 278, 282, 284
Offset: 1

Views

Author

Keywords

Comments

Sum of divisors of prime(n). - Labos Elemer, May 24 2001
For n > 1, there are a(n) more nonnegative Hurwitz quaternions than nonnegative Lipschitz quaternions, which are counted in A239396 and A239394, respectively. - T. D. Noe, Mar 31 2014
These are the numbers which are in A239708 or in A187813, but excluding the first 3 terms of A187813, i.e., a number m is a term if and only if m is a term > 2 of A187813, or m is the sum of two distinct powers of 2 such that m - 1 is prime. This means that a number m is a term if and only if m is a term > 2 such that there is no base b with a base-b digital sum of b, or b = 2 is the only base for which the base-b digital sum of m is b. a(6) is the only term such that a(n) = A187813(n); for n < 6, we have a(n) > A187813(n), and for n > 6, we have a(n) < A187813(n). - Hieronymus Fischer, Apr 10 2014
Does not contain any number of the format 1 + q + ... + q^e, q prime, e >= 2, i.e., no terms of A060800, A131991, A131992, A131993 etc. [Proof: that requires 1 + p = 1 + q + ... + q^e, or p = q*(1 + ... + q^(e-1)). This is not solvable because the left hand side is prime, the right hand side composite.] - R. J. Mathar, Mar 15 2018
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is odd. - Amiram Eldar, Jan 23 2021

References

  • C. W. Trigg, Problem #1210, Series Formation, J. Rec. Math., 15 (1982), 221-222.

Crossrefs

Column 1 of A341605, column 2 of A286623 and of A328464.
Partial sums of A125266.

Programs

Formula

a(n) = prime(n) + 1 = A000040(n) + 1.
a(n) = A000005(A034785(n)) = A000203(A000040(n)). - Labos Elemer, May 24 2001
a(n) = A084920(n) / A006093(n). - Reinhard Zumkeller, Aug 06 2007
A239703(a(n)) <= 1. - Hieronymus Fischer, Apr 10 2014
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) ~ n*log(n).
Product_{n>=1} (1 + 2/(a(n)*(a(n) - 2))) = 5/2. (End)

A030078 Cubes of primes.

Original entry on oeis.org

8, 27, 125, 343, 1331, 2197, 4913, 6859, 12167, 24389, 29791, 50653, 68921, 79507, 103823, 148877, 205379, 226981, 300763, 357911, 389017, 493039, 571787, 704969, 912673, 1030301, 1092727, 1225043, 1295029, 1442897, 2048383, 2248091, 2571353, 2685619, 3307949
Offset: 1

Views

Author

Keywords

Comments

Numbers with exactly three factorizations: A001055(a(n)) = 3 (e.g., a(4) = 1*343 = 7*49 = 7*7*7). - Reinhard Zumkeller, Dec 29 2001
Intersection of A014612 and A000578. Intersection of A014612 and A030513. - Wesley Ivan Hurt, Sep 10 2013
Let r(n) = (a(n)-1)/(a(n)+1) if a(n) mod 4 = 1, (a(n)+1)/(a(n)-1) otherwise; then Product_{n>=1} r(n) = (9/7) * (28/26) * (124/126) * (344/342) * (1332/1330) * ... = 48/35. - Dimitris Valianatos, Mar 06 2020
There exist 5 groups of order p^3, when p prime, so this is a subsequence of A054397. Three of them are abelian: C_p^3, C_p^2 X C_p and C_p X C_p X C_p = (C_p)^3. For 8 = 2^3, the 2 nonabelian groups are D_8 and Q_8; for odd prime p, the 2 nonabelian groups are (C_p x C_p) : C_p, and C_p^2 : C_p (remark, for p = 2, these two semi-direct products are isomorphic to D_8). Here C, D, Q mean Cyclic, Dihedral, Quaternion groups of the stated order; the symbols X and : mean direct and semidirect products respectively. - Bernard Schott, Dec 11 2021

Examples

			a(3) = 125; since the 3rd prime is 5, a(3) = 5^3 = 125.
		

References

  • Edmund Landau, Elementary Number Theory, translation by Jacob E. Goodman of Elementare Zahlentheorie (Vol. I_1 (1927) of Vorlesungen über Zahlentheorie), by Edmund Landau, with added exercises by Paul T. Bateman and E. E. Kohlbecker, Chelsea Publishing Co., New York, 1958, pp. 31-32.

Crossrefs

Other sequences that are k-th powers of primes are: A000040 (k=1), A001248 (k=2), this sequence (k=3), A030514 (k=4), A050997 (k=5), A030516 (k=6), A092759 (k=7), A179645 (k=8), A179665 (k=9), A030629 (k=10), A079395 (k=11), A030631 (k=12), A138031 (k=13), A030635 (k=16), A138032 (k=17), A030637 (k=18).
Cf. A060800, A131991, A000578, subsequence of A046099.
Subsequence of A007422 and of A054397.

Programs

Formula

n such that A062799(n) = 3. - Benoit Cloitre, Apr 06 2002
a(n) = A000040(n)^3. - Omar E. Pol, Jul 27 2009
A064380(a(n)) = A000010(a(n)). - Vladimir Shevelev, Apr 19 2010
A003415(a(n)) = A079705(n). - Reinhard Zumkeller, Jun 26 2011
A056595(a(n)) = 2. - Reinhard Zumkeller, Aug 15 2011
A000005(a(n)) = 4. - Wesley Ivan Hurt, Sep 10 2013
a(n) = A119959(n) * A008864(n) -1.- R. J. Mathar, Aug 13 2019
Sum_{n>=1} 1/a(n) = P(3) = 0.1747626392... (A085541). - Amiram Eldar, Jul 27 2020
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(3)/zeta(6) (A157289).
Product_{n>=1} (1 - 1/a(n)) = 1/zeta(3) (A088453). (End)

A053183 Primes of the form p^2 + p + 1 when p is prime.

Original entry on oeis.org

7, 13, 31, 307, 1723, 3541, 5113, 8011, 10303, 17293, 28057, 30103, 86143, 147073, 459007, 492103, 552793, 579883, 598303, 684757, 704761, 735307, 830833, 1191373, 1204507, 1353733, 1395943, 1424443, 1482307, 1886503, 2037757
Offset: 1

Views

Author

Enoch Haga, Mar 01 2000

Keywords

Comments

Also primes in A001001. - Philippe Deléham, Feb 21 2004
This sequence is a subsequence of A002383. These numbers are repunit primes 111_n, so they are Brazilian primes belonging to A085104. - Bernard Schott, Dec 21 2012
Also, primes in A060800. - Zak Seidov, Mar 21 2014
Also subsequence of A002061, A193574. - Hartmut F. W. Hoft, May 05 2017
As p^2 + p + 1 is the sum of divisors of p^2 for any prime p, this is a subsequence of A023195. - Peter Munn, Feb 16 2018

Crossrefs

Programs

  • Mathematica
    a053183[n_] := Select[Map[Prime[#]^2 + Prime[#] + 1&, Range[n]], PrimeQ]
    a053183[225] (* data *) (* Hartmut F. W. Hoft, May 05 2017 *)
    Select[Table[p^2+p+1,{p,Prime[Range[300]]}],PrimeQ] (* Harvey P. Dale, Aug 15 2017 *)

Formula

a(n) = A053182(n)^2 + A053182(n) + 1.

A036690 Product of a prime and the following number.

Original entry on oeis.org

6, 12, 30, 56, 132, 182, 306, 380, 552, 870, 992, 1406, 1722, 1892, 2256, 2862, 3540, 3782, 4556, 5112, 5402, 6320, 6972, 8010, 9506, 10302, 10712, 11556, 11990, 12882, 16256, 17292, 18906, 19460, 22350, 22952, 24806, 26732, 28056, 30102
Offset: 1

Views

Author

Keywords

Comments

The infinite sum over the reciprocals is given in A179119. - Wolfdieter Lang, Jul 10 2019
1/a(n) is the asymptotic density of numbers whose prime(n)-adic valuation is positive and even. - Amiram Eldar, Jan 23 2021

Examples

			a(3)=30 because prime(3)=5 and prime(3)+1=6, hence 5*6 = 30.
		

Crossrefs

Programs

Formula

a(n) = prime(n)*(prime(n)+1).
a(n) = A060800(n) - 1.
a(n) = 2*A034953(n). - Artur Jasinski, Feb 06 2007
From Amiram Eldar, Jan 23 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = zeta(2)/zeta(3) (A306633).
Product_{n>=1} (1 - 1/a(n)) = A065463. (End)
Sum_{n>=1} 1/a(n) = A179119. - R. J. Mathar, Mar 31 2025

A067692 a(n) = Sum_{0 < d <= t <= n, d|n, t|n} d*t.

Original entry on oeis.org

1, 7, 13, 35, 31, 97, 57, 155, 130, 227, 133, 497, 183, 413, 418, 651, 307, 988, 381, 1155, 762, 953, 553, 2225, 806, 1307, 1210, 2093, 871, 3242, 993, 2667, 1762, 2183, 1802, 5096, 1407, 2705, 2418, 5155, 1723, 5858
Offset: 1

Views

Author

Reinhard Zumkeller, Feb 04 2002

Keywords

Comments

Total area of all s X t rectangles, where the (s,t) are the pairs of divisors of n such that 1 <= s <= t. For example, when n = 4, the rectangles are 1 X 1, 1 X 2, 1 X 4, 2 X 2, 2 X 4, and 4 X 4, whose total area is a(4) = 1*1 + 1*2 + 1*4 + 2*2 + 2*4 + 4*4 = 35. - Wesley Ivan Hurt, Nov 15 2021

Examples

			a(6) = 1*1+1*2+1*3+1*6+2*2+2*3+2*6+3*3+3*6+6*6 = 1+2+3+6+4+6+12+9+18+36 = 97.
		

Crossrefs

Programs

Formula

a(n) = (1/2)*(sigma_1(n)^2 + sigma_2(n)), cf. A000203, A001157.
For p prime: a(p) = 1 + p + p^2, a(A000040(k)) = A060800(k).
Sum_{k=1..n} a(k) = (7/12)*zeta(3) * n^3 + O(n^2*log(n)^2). - Amiram Eldar, Dec 15 2023

A131992 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4.

Original entry on oeis.org

31, 121, 781, 2801, 16105, 30941, 88741, 137561, 292561, 732541, 954305, 1926221, 2896405, 3500201, 4985761, 8042221, 12326281, 14076605, 20456441, 25774705, 28792661, 39449441, 48037081, 63455221, 89451461, 105101005, 113654321
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Thébault shows that a(2) = 121 is the only square in this sequence. - Charles R Greathouse IV, Jul 23 2013
Giovanni Resta has found that 28792661 is the first Sophie Germain prime of this form (and actually of the form p = (n^m-1)/(n-1) for any p-1 > n, m > 1). - M. F. Hasler, Mar 03 2020

Examples

			a(1) = 31 because prime(1) = 2 and 1 + 2 + 2^2 + 2^3 + 2^4 = 1 + 2 + 4 + 8 + 16 = 31.
		

References

  • Victor Thébault, Curiosités arithmétiques, Mathesis 62 (1953), pp. 120-129.

Crossrefs

Equals A053699 restricted to prime indices. Subsequence of primes is A190527.

Programs

Formula

a(n) = 1 + A131991(n)*A000040(n).
a(n) = (A050997(n) - 1)/A006093(n).
a(n) = A000203(prime(n)^4). - R. J. Mathar, Mar 15 2018
a(n) = (prime(n)^5 - 1)/(prime(n) - 1) = A053699(prime(n)). (This is also meant by the 2nd formula.) - M. F. Hasler, Mar 03 2020

A131991 a(n) = 1 + prime(n) + prime(n)^2 + prime(n)^3.

Original entry on oeis.org

15, 40, 156, 400, 1464, 2380, 5220, 7240, 12720, 25260, 30784, 52060, 70644, 81400, 106080, 151740, 208920, 230764, 305320, 363024, 394420, 499360, 578760, 712980, 922180, 1040604, 1103440, 1236600, 1307020, 1455780, 2064640, 2265384
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

Number of points and lines for the prime(n)-Cremona-Richmond configuration. - Carlos Segovia Gonzalez, Jul 30 2020

Examples

			a(4)=400 because the 4th prime is 7, 7^3=343, 7^2=49, and 343+49+7+1=400.
		

Crossrefs

Cf. A000040, A000203. - Zak Seidov, Feb 13 2016

Programs

  • Magma
    [1+NthPrime(n)+NthPrime(n)^2+NthPrime(n)^3: n in [1..40]]; // Vincenzo Librandi, Dec 27 2010
  • Maple
    A131991:= n -> map (p -> p^(3)+p^(2)+p+1, ithprime(n)):
    seq (A131991(n), n=1..32); # Jani Melik, Jan 25 2011
  • Mathematica
    #^3 + #^2 + # + 1 &/@Prime[Range[100]] (* Vincenzo Librandi, Mar 20 2014 *)

Formula

a(n) = 1 + A060800(n)*A000040(n).
a(n) = (A030514(n) - 1)/A006093(n).
a(n) = A000203(A000040(n)^3). - Zak Seidov, Feb 13 2016

A131993 1 + prime(n) + prime(n)^2 + prime(n)^3 + prime(n)^4 + prime(n)^5.

Original entry on oeis.org

63, 364, 3906, 19608, 177156, 402234, 1508598, 2613660, 6728904, 21243690, 29583456, 71270178, 118752606, 150508644, 234330768, 426237714, 727250580, 858672906, 1370581548, 1830004056, 2101864254, 3116505840, 3987077724
Offset: 1

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Comments

a(n) = 1 + A131992(n)*A000040(n).

Crossrefs

Programs

  • Magma
    [1+(&+[NthPrime(n)^(k): k in [1..5]]): n in [1..100]]; // Berselli - Librandi, Apr 20 2011
  • Mathematica
    Total[#^Range[0,5]]&/@Prime[Range[30]]  (* Harvey P. Dale, Apr 20 2011 *)

Formula

a(n) = (A030516(n) - 1)/A006093(n).
Showing 1-10 of 20 results. Next