A180608
O.g.f.: exp( Sum_{n>=1} A067692(n)*x^n/n ), where A067692(n) = [sigma(n)^2 + sigma(n,2)]/2.
Original entry on oeis.org
1, 1, 4, 8, 21, 39, 93, 171, 364, 675, 1338, 2433, 4641, 8282, 15222, 26811, 47920, 83046, 145288, 248164, 425970, 718303, 1213106, 2020540, 3365352, 5541996, 9115640, 14856657, 24164430, 39002462, 62800603, 100454208, 160257140
Offset: 0
O.g.f.: A(x) = 1 + x + 4*x^2 + 8*x^3 + 21*x^4 + 39*x^5 + 93*x^6 +...
log(A(x)) = x + 7*x^2/2 + 13*x^3/3 + 35*x^4/4 + 31*x^5/5 + 97*x^6/6 +...
-
nmax = 40; $RecursionLimit -> Infinity; a[n_] := a[n] = If[n == 0, 1, Sum[(DivisorSigma[1, k]^2 + DivisorSigma[2, k])/2*a[n-k], {k, 1, n}]/n]; Table[a[n], {n, 0, nmax}] (* Vaclav Kotesovec, Oct 28 2024 *)
-
{a(n)=polcoeff(exp(sum(m=1, n, (sigma(m)^2+sigma(m,2))/2*x^m/m)+x*O(x^n)), n)}
A068020
a(n) = Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=3.
Original entry on oeis.org
1, 15, 40, 155, 156, 672, 400, 1395, 1210, 2520, 1464, 7280, 2380, 6336, 6600, 11811, 5220, 21030, 7240, 26880, 16672, 22752, 12720, 66960, 20306, 36792, 33880, 67040, 25260, 119592, 30784, 97155, 60144, 80136, 64080, 230966, 52060, 110880, 97384
Offset: 1
-
a[n_] := 1/3!*(DivisorSigma[1, n]^3 + 3*DivisorSigma[1, n]*DivisorSigma[2, n] + 2*DivisorSigma[3, n]); Table[a[n], {n, 1, 39}] (* Jean-François Alcover, Dec 12 2011, after given formula *)
CIP3 = CycleIndexPolynomial[SymmetricGroup[3], Array[x, 3]]; a[n_] := CIP3 /. x[k_] -> DivisorSigma[k, n]; Array[a, 39] (* Jean-François Alcover, Nov 04 2016 *)
-
a(n) = my(f = factor(n)); (2*sigma(f, 3) + 3*sigma(f, 1)*sigma(f, 2) + sigma(f)^3) / 6; \\ Amiram Eldar, Jan 03 2025
A068027
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=10.
Original entry on oeis.org
1, 2047, 88573, 2794155, 12207031, 217414561, 329554457, 3269560515, 5883904390, 27757433067, 28531167061, 323579719281, 149346699503, 726383654349, 1158434219878, 3571013994483, 2141993519227, 15288525998824
Offset: 1
-
CIP10 = CycleIndexPolynomial[SymmetricGroup[10], Array[x, 10]]; a[n_] := CIP10 /. x[k_] -> DivisorSigma[k, n]; Array[a, 18] (* Jean-François Alcover, Nov 04 2016 *)
A119616
Second elementary symmetric function of divisors of n.
Original entry on oeis.org
0, 2, 3, 14, 5, 47, 7, 70, 39, 97, 11, 287, 13, 163, 158, 310, 17, 533, 19, 609, 262, 343, 23, 1375, 155, 457, 390, 1043, 29, 1942, 31, 1302, 542, 733, 502, 3185, 37, 895, 718, 2945, 41, 3358, 43, 2247, 1859, 1267, 47, 5983, 399, 2697, 1142, 3017, 53, 5150, 1006
Offset: 1
N. J. A. Sloane, based on email from Neven Juric (neven.juric(AT)apis-it.hr), Jun 07 2006
|-------+------------------------------------------+---------------------|
|...n...|................divisors(n)...............|..s2(divisors.(n))...|
|-------+------------------------------------------+---------------------|
|...1...|....................1.....................|..........0..........|
|...2...|...................1,2....................|..........2..........|
|...3...|...................1,3....................|..........3..........|
|...4...|..................1,2,4...................|.........14..........|
|...5...|...................1,5....................|..........5..........|
|...6...|.................1,2,3,6..................|.........47..........|
-
a:= n-> (l-> add(add(l[i]*l[j], i=1..j-1), j=2..nops(l)))
(sort([numtheory[divisors](n)[]])):
seq(a(n), n=1..80); # Alois P. Heinz, Jun 25 2014
-
f[n_] := Block[{d = Divisors@n}, Sum[ d[[u]]*d[[v]], {v, 2, Length@d}, {u, v - 1}]]; Array[f, 55] (* Robert G. Wilson v *)
-
a(n)=my(d=divisors(n));sum(i=1,#d-1,sum(j=i+1,#d,d[i]*d[j])) \\ Charles R Greathouse IV, Mar 05 2013
-
a(n)=(sigma(n)^2-sigma(n,2))/2 \\ Charles R Greathouse IV, Mar 05 2013
A068022
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=5.
Original entry on oeis.org
1, 63, 364, 2667, 3906, 26964, 19608, 97155, 99463, 271278, 177156, 1228836, 402234, 1324008, 1520784, 3309747, 1508598, 7746453, 2613660, 12021702, 7487424, 11661372, 6728904, 46371780, 12714681, 26297334, 25095280, 57926792
Offset: 1
-
CIP5 = CycleIndexPolynomial[SymmetricGroup[5], Array[x, 5]]; a[n_] := CIP5 /. x[k_] -> DivisorSigma[k, n]; Array[a, 28] (* Jean-François Alcover, Nov 04 2016 *)
A068023
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=6.
Original entry on oeis.org
1, 127, 1093, 10795, 19531, 164809, 137257, 788035, 896260, 2745247, 1948717, 15172249, 5229043, 18728221, 22858948, 53743987, 25646167, 142560946, 49659541, 244930015, 157475284, 258931921, 154764793, 1151073625, 317886556
Offset: 1
-
CIP6 = CycleIndexPolynomial[SymmetricGroup[6], Array[x, 6]]; a[n_] := CIP6 /. x[k_] -> DivisorSigma[k, n]; Array[a, 25] (* Jean-François Alcover, Nov 04 2016 *)
A068024
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=7.
Original entry on oeis.org
1, 255, 3280, 43435, 97656, 998184, 960800, 6347715, 8069620, 27615060, 21435888, 184770040, 67977560, 263540112, 343123440, 866251507, 435984840, 2595218340, 943531280, 4944199260, 3308659904, 5722701624, 3559590240
Offset: 1
-
CIP7 = CycleIndexPolynomial[SymmetricGroup[7], Array[x, 7]]; a[n_] := CIP7 /. x[k_] -> DivisorSigma[k, n]; Array[a, 23] (* Jean-François Alcover, Nov 04 2016 *)
A068025
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=8.
Original entry on oeis.org
1, 511, 9841, 174251, 488281, 6017605, 6725601, 50955971, 72636421, 276964061, 235794769, 2234070293, 883708281, 3698977205, 5148057541, 13910980083, 7411742281, 46982039533, 17927094321, 99343345101, 69493620405
Offset: 1
-
CIP8 = CycleIndexPolynomial[SymmetricGroup[8], Array[x, 8]]; a[n_] := CIP8 /. x[k_] -> DivisorSigma[k, n]; Array[a, 21] (* Jean-François Alcover, Nov 04 2016 *)
A068026
Z(S_m; sigma[1](n), sigma[2](n),..., sigma[m](n)) where Z(S_m; x_1,x_2,...,x_m) is the cycle index of the symmetric group S_m and sigma[k](n) is the sum of k-th powers of divisors of n; m=9.
Original entry on oeis.org
1, 1023, 29524, 698027, 2441406, 36192156, 47079208, 408345795, 653757313, 2773708938, 2593742460, 26912354924, 11488207654, 51851591352, 77226922344, 222984027123, 125999618778, 848125888467, 340614792100, 1991478050562
Offset: 1
-
CIP9 = CycleIndexPolynomial[SymmetricGroup[9], Array[x, 9]]; a[n_] := CIP9 /. x[k_] -> DivisorSigma[k, n]; Array[a, 20] (* Jean-François Alcover, Nov 04 2016 *)
A067817
a(n) = Sum_{r|n, s|n, t|n, r
Original entry on oeis.org
0, 0, 0, 8, 0, 72, 0, 120, 27, 180, 0, 1400, 0, 336, 360, 1240, 0, 3285, 0, 3948, 672, 792, 0, 15960, 125, 1092, 1080, 8240, 0, 25992, 0, 11160, 1584, 1836, 1680, 57065, 0, 2280, 2184, 46620, 0, 56352, 0, 23592, 18612, 3312, 0, 150040, 343, 29955, 3672
Offset: 1
-
a:= n-> coeff(expand(mul(1+d*x, d=numtheory[divisors](n))), x, 3):
seq(a(n), n=1..100); # Alois P. Heinz, Mar 18 2023
-
a[n_] := Module[{d = DivisorSigma[{1, 2, 3}, n]}, (d[[1]]^3 - 3*d[[1]]*d[[2]] + 2*d[[3]]) / 6]; Array[a, 50] (* Amiram Eldar, Jan 03 2025 *)
-
a(n) = 1/6*(sigma(n, 1)^3 - 3*sigma(n, 1)*sigma(n, 2) + 2*sigma(n, 3)) \\ Michel Marcus, Jun 17 2013
Showing 1-10 of 11 results.
Next
Comments