cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A201825 G.f.: exp( Sum_{n>=1} A119616(n)*x^n/n ) where A119616(n) = (sigma(n)^2 - sigma(n,2))/2.

Original entry on oeis.org

1, 0, 1, 1, 4, 2, 12, 6, 26, 21, 61, 46, 155, 114, 317, 293, 704, 627, 1539, 1400, 3149, 3124, 6469, 6463, 13341, 13467, 26271, 27889, 51970, 55513, 101961, 110261, 195586, 217238, 373391, 418299, 708816, 800833, 1323842, 1521372, 2461081, 2846722, 4543987
Offset: 0

Views

Author

Paul D. Hanna, Dec 05 2011

Keywords

Comments

Here sigma(n) = A000203(n), the sum of divisors of n; sigma(n,2) = A001157(n), the sum of squares of divisors of n.

Examples

			G.f.: A(x) = 1 + x^2 + x^3 + 4*x^4 + 2*x^5 + 12*x^6 + 6*x^7 + 26*x^8 +...
where
log(A(x)) = 2*x^2/2 + 3*x^3/3 + 14*x^4/4 + 5*x^5/5 + 47*x^6/6 + 7*x^7/7 + 70*x^8/8 + 39*x^9/9 + 97*x^10/10 + 11*x^11/11 +...+ A119616(n)*x^n/n +...
		

Crossrefs

Cf. A119616.

Programs

  • PARI
    {a(n)=polcoeff(exp(sum(m=1,n,(sigma(m)^2-sigma(m,2))/2*x^m/m)+x*O(x^n)),n)}
    
  • PARI
    {a(n)=if(n==0,1,(1/n)*sum(k=1,n,(sigma(k)^2 - sigma(k,2))/2 * a(n-k)))}

Formula

a(n) = (1/n)*Sum_{k=1..n} (sigma(k)^2 - sigma(k,2))/2 * a(n-k) for n>0 with a(0)=1.
Logarithmic derivative yields A119616, the second elementary symmetric function of divisors of n.

A224381 Table of coefficients in the expansion of product((1+d_i*x), d_i|n).

Original entry on oeis.org

1, 1, 1, 1, 3, 2, 1, 4, 3, 1, 7, 14, 8, 1, 6, 5, 1, 12, 47, 72, 36, 1, 8, 7, 1, 15, 70, 120, 64, 1, 13, 39, 27, 1, 18, 97, 180, 100, 1, 12, 11, 1, 28, 287, 1400, 3444, 4032, 1728, 1, 14, 13, 1, 24, 163, 336, 196, 1, 24, 158, 360, 225, 1, 31, 310, 1240, 1984, 1024
Offset: 0

Views

Author

Philippe Deléham, Apr 05 2013

Keywords

Examples

			Row n = 6 : 1, 12, 47, 72, 36 because  (1+x)*(1+2x)*(1+3x)*(1+6x) = 1 + 12*x + 47*x^2 + 72*x^3 + 36*x^4.
Table begins :
  1;
  1,  1;
  1,  3,   2;
  1,  4,   3;
  1,  7,  14,    8;
  1,  6,   5;
  1, 12,  47,   72,   36;
  1,  8,   7;
  1, 15,  70,  120,   64;
  1, 13,  39,   27;
  1, 18,  97,  180,  100;
  1, 12,  11;
  1, 28, 287, 1400, 3444, 4032, 1728;
  1, 14,  13;
  1, 24, 163,  336,  196;
  1, 24, 158,  360,  225;
  1, 31, 310, 1240, 1984, 1024;
  ...
		

Crossrefs

Columns k=0-3 give: A000012, A000203, A119616, A067817.
Row lengths are: A000005(n)+1.
Last elements of rows give: A007955.

Programs

  • Maple
    with(numtheory):
    T:= proc(n) local p;
          p:= mul(1+d*x, d=divisors(n));
          seq(coeff(p, x, k), k=0..degree(p))
        end:
    seq(T(n), n=0..30);  # Alois P. Heinz, Apr 05 2013
  • Mathematica
    T[n_] := CoefficientList[Product[1+d*x, {d, Divisors[n]}], x]; T[0] = {1};
    Array[T, 20, 0] // Flatten (* Jean-François Alcover, Mar 27 2017 *)

Formula

T(n,k) = [x^k] Product_{d|n} (1+d*x).

A119623 Composite numbers for which the second elementary symmetric function of divisors (s2) is prime.

Original entry on oeis.org

6, 10, 14, 26, 34, 62, 82, 122, 142, 146, 202, 206, 226, 254, 334, 346, 362, 394, 446, 542, 562, 566, 586, 734, 766, 794, 842, 926, 934, 982, 1046, 1126, 1286, 1294, 1346, 1382, 1514, 1546, 1594, 1622, 1654, 1706, 1766, 1906, 1934
Offset: 1

Views

Author

Zak Seidov, Jun 08 2006

Keywords

Comments

Terms in A119616 are always prime if n is prime p and s2(p)=p, hence it is interesting to find composite numbers for which s2 is also prime. Relative values of s2 are: s2=47,97,163,457,733,2203,3733,7993,10723,11317,21313,22147,26557,33403,57283,61417,67153,79393,101467,149323,160453,162727,174337,272683,296827,318793,358273,432907,440383,486583,551767,639007,832687,843043,911917,961183,1152913,1202017,1277593,1322743,1375303,1462897,1567327,1824997,1878883. Otherwise the sequence s2 gives numbers which appear in A119616 at least twice (and conjecture is that exactly twice).

Crossrefs

Cf. A119616.

Programs

  • Mathematica
    dv:=Divisors[n];le:=Length[dv];re=Reap[Do[If[ !PrimeQ[n],su=Sum[dv[[i]]*dv[[i+j]],{i,1,le-1},{j,1,le-i}];If[PrimeQ[su],Sow[{n,su}]]],{n,2,2000}]][[2,1]]

A337329 Sum of the products of all pairs of divisors of n, (d1,d2), such that d1|n, d2|n, d1|d2 and d1

Original entry on oeis.org

0, 2, 3, 14, 5, 41, 7, 70, 39, 87, 11, 245, 13, 149, 143, 310, 17, 455, 19, 539, 241, 321, 23, 1165, 155, 431, 390, 945, 29, 1521, 31, 1302, 509, 699, 467, 2639, 37, 857, 679, 2595, 41, 2687, 43, 2093, 1664, 1221, 47, 5053, 399, 2387, 1091, 2835, 53, 4370, 951, 4585, 1333, 1887, 59
Offset: 1

Views

Author

Wesley Ivan Hurt, Aug 23 2020

Keywords

Comments

Total area of all distinct nonsquare rectangles that can be made whose side lengths are divisors of n and whose length is an integer multiple of its width.

Crossrefs

Programs

  • Mathematica
    Table[Sum[Sum[(i*k) (1 - Ceiling[k/i] + Floor[k/i])*(1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 80}]

Formula

a(n) = Sum_{d1|n, d2|n, d1|d2, d1
a(n) = n if and only if n is prime. - Bernard Schott, Aug 24 2020
Showing 1-4 of 4 results.