A351318 a(n) is the least prime prime(k), k > n, such that A036689(k) or A036690(k) is s(n) + s(n+1) + ... + s(j), j < k, where each s(i) is either A036689(i) or A036690(i).
3, 7, 13, 31, 47, 47, 53, 53, 73, 137, 103, 131, 109, 137, 239, 257, 229, 349, 257, 269, 331, 347, 389, 409, 257, 389, 251, 229, 499, 487, 509, 491, 541, 487, 353, 739, 571, 743, 727, 307, 883, 743, 929, 827, 971, 911, 887, 569, 1063, 751, 1013, 883, 1451, 977, 1259, 853, 983, 947, 967, 1049
Offset: 1
Keywords
Examples
a(3) = 13 because prime(3) = 5, the next two primes are 7 and 11, and 5*6 + 7*6 + 11*10 = 182 = 13*14.
Links
- Robert Israel, Table of n, a(n) for n = 1..2400
Programs
-
Maple
P:= select(isprime, [2,seq(i,i=3..10^6,2)]): R:= convert(map(p -> (p*(p-1),p*(p+1)),P),set): f:= proc(n) local S,T,SR,i,s; S:= {P[n]*(P[n]-1),P[n]*(P[n]+1)}; for i from n+1 do T:= [P[i]*(P[i]-1),P[i]*(P[i]+1)]; S:= map(s -> (s+T[1],s+T[2]),S); SR:= S intersect R; if SR <> {} then s:= (sqrt(1+4*min(SR))-1)/2; if isprime(s) then return s else return s+1 fi fi od end proc: map(f, [$1..100]);
Comments