cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A261887 Number of triples of primes (p,q,r) that satisfy p+q^2+r^3=n.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 2, 1, 0, 1, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 2, 2, 3, 0, 3, 1, 2, 2, 1, 2, 2, 0, 2, 1, 2, 2, 2, 0, 1, 2, 3, 3, 1, 1, 1, 4, 3, 0, 3, 1, 3, 3, 0, 1, 2, 1, 3, 2, 1, 2, 3, 1, 3, 1, 3, 3, 2, 2, 0, 4, 2, 1, 2, 1, 2, 3, 2
Offset: 1

Views

Author

Michel Marcus, Sep 05 2015

Keywords

Examples

			For p=2, p+p^2+p^3 = 14 = A181149(1), so a(14)=1.
		

Crossrefs

Cf. A181149 (p+p^2+p^3 with p prime), A261888.

Programs

  • PARI
    a(n) = {nb = 0; forprime(p=2, n, forprime(q=2, n, if (p+q^2 > n, break); forprime(r=2, n, if (p+q^2+r^3 > n, break); if (p+q^2+r^3 == n, nb++);););); nb;}

Formula

G.f.: (Sum_{i>=1} x^prime(i))*(Sum_{j>=1} x^(prime(j)^2))*(Sum_{k>=1} x^(prime(k)^3)). - Ilya Gutkovskiy, Feb 06 2017

A261888 Positive integers n such that there is no triple of primes (p, q, r) satisfying p+q^2+r^3=n.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 16, 18, 21, 26, 27, 32, 37, 45, 51, 61, 66, 82, 108, 127, 178, 186, 192, 234, 252, 276, 306, 332, 336, 351, 402, 468, 582, 606, 612, 622, 642, 666, 702, 712, 738, 762, 798, 816, 822, 864, 882, 906, 930, 996, 1018, 1032
Offset: 1

Views

Author

Michel Marcus, Sep 05 2015

Keywords

Examples

			For p=2, p+p^2+p^3 = 14 = A181149(1), so 14 is the first value not to be in the sequence.
		

Crossrefs

Programs

  • PARI
    nbt(n) = {nb = 0; forprime(p=2, n, forprime(q=2, n, if (p+q^2 > n, break); forprime(r=2, n, if (p+q^2+r^3 > n, break); if (p+q^2+r^3 == n, nb++);););); nb;}
    isok(n) = nbt(n)==0;
Showing 1-2 of 2 results.