cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Ilya Lopatin

Ilya Lopatin's wiki page.

Ilya Lopatin has authored 31 sequences. Here are the ten most recent ones:

A242392 Irregular table which shows in row n the list of distinct integer arithmetic means of distinct divisors of n, or zero if n <= 2.

Original entry on oeis.org

0, 0, 2, 3, 3, 2, 3, 4, 4, 3, 5, 6, 2, 5, 6, 3, 6, 6, 2, 3, 4, 5, 6, 7, 8, 7, 4, 8, 2, 3, 4, 5, 5, 6, 7, 8, 7, 4, 8, 2, 3, 4, 6, 8, 9, 10, 3, 5, 6, 7, 8, 9, 9, 2, 4, 5, 6, 7, 8, 9, 10, 12, 10, 3, 5, 6, 7, 9, 10, 11, 12, 15, 2, 4, 5, 8, 12, 14, 6, 9, 12, 12
Offset: 1

Author

Keywords

Examples

			Table starts:
0,
0,
2,
3,
3,
2, 3, 4,
4,
3, 5, 6,
2, 5, 6,
3, 6,
6,
2, 3, 4, 5, 6, 7, 8,
7,
4, 8,
2, 3, 4, 6, 8, 9, 10,
3, 5, 6, 7, 8, 9,
9,
2, 4, 5, 6, 7, 8, 9, 10, 12,
10,
3, 5, 6, 7, 9, 10, 11, 12, 15,
2, 4, 5, 8, 12, 14,
6, 9, 12,
12.
2, 3, 4, are in 6th row because:
1) (n/6 + n/2)/2 = (6/6 + 6/2)/2 = (1 + 3)/2 = 2,
2) (n/6 + n/3 + n/2 + n/1)/4 = (6/6 + 6/3 + 6/2 + 6/1)/4 = (1 + 2 + 3 + 6)/4 = 3,
3) (n/3 + n/1)/2 = (6/3 + 6/1)/2 = (2 + 6)/2 = 4.
		

Crossrefs

Cf. A027750.

A242310 Largest 1 < k <= A000005(n) such that the sum of k distinct divisors of n is equal to k*m for some m, or 1 if no such k exists.

Original entry on oeis.org

1, 1, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 4, 3, 2, 5, 2, 6, 4, 4, 2, 7, 2, 2, 4, 5, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 7, 2, 8, 2, 6, 6, 4, 2, 11, 3, 4, 4, 5, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 5, 6, 4, 8, 2, 6, 4, 8, 2, 11, 2, 2, 4, 4, 2, 8, 4, 2, 2, 11, 4, 4, 4
Offset: 1

Author

Keywords

Comments

k is the number of divisors of arithmetic numbers A003601.

Examples

			a(12) = 5 because 1 + 2 + 4 + 6 + 12 = 25 = 5*5 for m = 5.
		

Crossrefs

A241884 Numbers n such that n - n^2/k^2 is not prime for all k < n.

Original entry on oeis.org

1, 2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100
Offset: 1

Author

Keywords

Comments

Conjecture: numbers n such that n-1 is not a prime number. - Vincenzo Librandi, Jul 16 2016
Counterexamples to conjecture: 56, 306, 552, 870, ... are not in the sequence. These are p^2+p where p is prime but p^2+p-1 is not prime. - Robert Israel, Jul 04 2017

Examples

			56 is not in the sequence because 56 - 56^2/8^2 = 7 is prime for k = 8.
		

Crossrefs

Cf. A008864, A036690, A138666 (numbers n such that 2n - n/k is not prime for all k), A242221.

Programs

  • Maple
    filter:= n -> andmap(t -> not isprime(n - t^2), numtheory:-divisors(n)):
    select(filter, [$1..1000]); # Robert Israel, Jul 04 2017
  • PARI
    isOK(n) = fordiv(n, k, if(isprime(n-(n/k)^2), return(0))); 1
    s=[]; for(n=1, 100, if(isOK(n), s=concat(s, n))); s \\ Colin Barker, May 16 2014

A241534 Number of integer arithmetic means of 2 distinct divisors of n.

Original entry on oeis.org

0, 0, 1, 1, 1, 2, 1, 3, 3, 2, 1, 7, 1, 2, 6, 6, 1, 6, 1, 7, 6, 2, 1, 16, 3, 2, 6, 7, 1, 12, 1, 10, 6, 2, 6, 18, 1, 2, 6, 16, 1, 12, 1, 7, 15, 2, 1, 29, 3, 6, 6, 7, 1, 12, 6, 16, 6, 2, 1, 34, 1, 2, 15, 15, 6, 12, 1, 7, 6, 12, 1, 39, 1, 2, 15, 7, 6, 12, 1, 29
Offset: 1

Author

Keywords

Examples

			Triangle T(n, k) starts for n > 2:
2,
3,
3,
2, 4,
4,
3, 5, 6,
2, 5, 6;
where T(n, k) = the values of k such that 2k = q + g; q, g are distinct divisors of n.
a(20) = 7 because (1,5), (2,4), (2,10), (2,20), (4,10), (4,20) and (10,20) are the 7 values of (g,q) such that (g+q)/2 is an integer. - _Colin Barker_, May 10 2014
		

Crossrefs

Cf. A027750.

Programs

  • Mathematica
    Table[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Oct 06 2020 *)
  • PARI
    a(n) = c=0; fordiv(n, g, fordiv(n, q, if(gColin Barker, May 10 2014

Formula

a(n) = Sum_{d1|n, d2|n, d1 < d2} (1 - ceiling((d1+d2)/2) + floor((d1+d2)/2)). - Wesley Ivan Hurt, Oct 06 2020

Extensions

Several incorrect terms corrected, and more terms added by Colin Barker, May 10 2014

A240838 Primes p such that prime(p) + 2*p^2 is prime.

Original entry on oeis.org

2, 3, 5, 13, 41, 43, 139, 173, 227, 239, 359, 463, 541, 691, 743, 761, 821, 823, 827, 887, 1021, 1117, 1289, 1427, 1489, 1637, 1723, 1933, 1999, 2081, 2287, 2309, 2719, 2791, 2833, 2843, 2953, 3329, 3541, 3803, 3823, 3929, 4003, 4007, 4079, 4139, 4297, 4451, 4561, 4597, 4691, 4703, 4817, 4931, 4943
Offset: 1

Author

Keywords

Comments

The associated primes are: 11, 23, 41, 379, 3541, ...

Examples

			2 is in this sequence because 2 and prime(2) + 2*2^2 = 3 + 8 = 11 are both prime.
		

Crossrefs

Programs

  • Magma
    [n: n in {1..5000} | IsPrime(n) and IsPrime(s) where s is (2*n^2 + NthPrime(n))];
    
  • Mathematica
    Select[Prime[Range[700]],PrimeQ[Prime[#]+2#^2]&] (* Harvey P. Dale, Mar 19 2018 *)
  • PARI
    isok(p) = isprime(p) && isprime(prime(p) + 2*p^2); \\ Michel Marcus, Apr 13 2014

A240842 Numbers n such that n - 2*k^2 is a prime for all k > 0 with k^2 < n/2.

Original entry on oeis.org

1, 2, 4, 5, 7, 13, 15, 21, 25, 31, 49, 55, 61, 91, 181, 199
Offset: 1

Author

Keywords

Comments

No other terms found for n < 2000000. - Colin Barker, Apr 13 2014
No other terms with n < 10^17. - Charles R Greathouse IV, Apr 14 2014
All terms > 4 must be odd, since otherwise n - 2*1^2 is composite. The initial terms 1 and 2 satisfy the condition voidly (no k^2 < n/2 exists). They could be excluded explicitly, but including them can only improve search results. - M. F. Hasler, Apr 16 2014

Examples

			91 is in this sequence because 91-2*1^2 = 89, 91-2*2^2 = 83, 91-2*3^2 = 73, 91-2*4^2 = 59, 91-2*5^2 = 41, 91-2*6^2 = 19 where 89, 83, 73, 59, 41, 19 are all primes.
		

Crossrefs

Cf. A039669.

Programs

  • PARI
    isOK(n) = k=1; until(k^2>=n/2, if(!isprime(n-2*k^2), return(0)); k++); 1;
    for(n=1, 20000, if(isOK(n), print1(n, ", "))) \\ Colin Barker, Apr 14 2014

A242221 Numbers n such that n - n^2/m^2 and 2n - n/m are not prime for all m.

Original entry on oeis.org

1, 25, 26, 28, 33, 35, 39, 46, 50, 58, 63, 65, 77, 78, 81, 85, 86, 88, 92, 93, 94, 95, 105, 111, 116, 118, 119, 122, 123, 124, 125, 130, 133, 134, 143, 144, 145, 146, 148, 153, 155, 160, 161, 162, 165, 170, 171, 172, 176, 178, 183, 185, 186, 188, 189, 196, 202
Offset: 1

Author

Keywords

Comments

Intersection of A241884 and A138666.

Examples

			26 is in this sequence because:
1) 26 - 26^2/1^2 = -650 and 2*26 - 26/1 = 26 both not prime for m = 1,
2) 26 - 26^2/2^2 = -143 and 2*26 - 26/2 = 39 both not prime for m = 2,
3) 26 - 26^2/13^2 = 22 and 2*26 - 26/13 = 50 both not prime for m = 13,
4) 26 - 26^2/26^2 = 25 and 2*26 - 26/26 = 51 both not prime for m = 26.
		

Crossrefs

Programs

  • Maple
    filter:= proc(n) andmap(t -> not isprime(n - n^2/t^2) and not isprime(2*n - n/t), numtheory:-divisors(n)) end proc:
    select(filter, [$1..200]); # Robert Israel, Jul 03 2017
  • Mathematica
    filterQ[n_] := AllTrue[Divisors[n], !PrimeQ[n - n^2/#^2] && !PrimeQ[2n - n/#]&];
    Select[Range[200], filterQ] (* Jean-François Alcover, Jul 27 2020, after Maple *)
  • PARI
    f(n)=fordiv(n, m, if(isprime(n-n^2/m^2), return(0))); 1
    g(n)=fordiv(n, m, if(isprime(2*n-n/m), return(0))); 1
    for(n=1, 200, if(f(n) && g(n), print1(n, ", "))) \\ Colin Barker, May 08 2014

Extensions

More terms from Colin Barker, May 08 2014
Example corrected by Colin Barker, May 09 2014

A236967 Expansion of (1+3*x)^2/(1-3*x)^2.

Original entry on oeis.org

1, 12, 72, 324, 1296, 4860, 17496, 61236, 209952, 708588, 2361960, 7794468, 25509168, 82904796, 267846264, 860934420, 2754990144, 8781531084, 27894275208, 88331871492, 278942752080, 878669669052, 2761533245592, 8661172452084, 27113235502176, 84728860944300
Offset: 0

Author

Keywords

Crossrefs

Cf. Expansion of (1 + k*x)^m/(1 - k*x)^m where the values of k,m are:
......|..m = 1..|..m = 2..|..m = 3..|..m = 4..|..m = 5..|..m = 6..|
k = 2 | A151821 | A241204 | | | | |
k = 3 | A099856 | A236967 | | | | |
k = 4 | A081654 | | | | | |
-------------------------------------------------------------------

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+3*x)^2/(1-3*x)^2));

Formula

For n >= 1, a(n) = 4*n*3^n. - Robert Israel, May 08 2014

Extensions

Edited by Wolfdieter Lang, May 07 2014

A240882 Numbers m such that m - 4*k^2 is a prime for all k > 0 with k^2 < m/4.

Original entry on oeis.org

6, 7, 9, 11, 15, 21, 23, 27, 33, 35, 47, 77, 83, 143, 167, 227, 437
Offset: 1

Author

Keywords

Comments

No other terms with m < 1000000. - Colin Barker, Apr 14 2014
If it exists, a(18) > 10^9. - Jon E. Schoenfield, Mar 17 2024

Examples

			21 is in this sequence because 21 - 4*1^2 = 17 and 21 - 4*2^2 = 5 are both prime.
		

Crossrefs

Cf. A240842.

Programs

  • Mathematica
    n=6;Monitor[Parallelize[While[True,If[MemberQ[PrimeQ[Table[n-4*k^2,{k,1,Floor[Sqrt[n/4]]}]],False]==False,Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Mar 17 2024 *)
  • PARI
    isOK(n) = k=1; until(k^2>=n/4, if(!isprime(n-4*k^2), return(0)); k++); 1;
    for(n=3, 1000000, if(isOK(n), print1(n, ", "))) \\ Colin Barker, Apr 14 2014

Extensions

One missing term and one additional term from Colin Barker, Apr 14 2014

A241204 Expansion of (1 + 2*x)^2/(1 - 2*x)^2.

Original entry on oeis.org

1, 8, 32, 96, 256, 640, 1536, 3584, 8192, 18432, 40960, 90112, 196608, 425984, 917504, 1966080, 4194304, 8912896, 18874368, 39845888, 83886080, 176160768, 369098752, 771751936, 1610612736, 3355443200, 6979321856, 14495514624, 30064771072, 62277025792
Offset: 0

Author

Keywords

Crossrefs

Subsequence of A008574.

Programs

  • Magma
    R:=PowerSeriesRing(Integers(), 41); Coefficients(R!((1+2*x)^2/(1-2*x)^2));
    
  • Maple
    A241204:= n->`if`(n=0, 1, 2^(n+2)*n); seq(A241204(n), n=0..20); # Wesley Ivan Hurt, Apr 22 2014
  • Mathematica
    Table[2^(n+2)*n + Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 07 2023 *)
    LinearRecurrence[{4,-4},{1,8,32},30] (* Harvey P. Dale, Jun 23 2025 *)
  • PARI
    Vec((2*x+1)^2/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Apr 22 2014
    
  • Sage
    def A241204(i):
        if i==0: return 1
        else: return 2^(2+i)*i;
    [A241204(n) for n in (0..30)] # Bruno Berselli, Apr 23 2014

Formula

a(n) = 2^(2+n)*n for n>0. - Colin Barker, Apr 23 2014
a(n) = 4*a(n-1)-4*a(n-2) for n>2. - Colin Barker, Apr 23 2014
From Amiram Eldar, Jan 13 2021: (Start)
Sum_{n>=1} 1/a(n) = log(2)/4.
Sum_{n>=1} (-1)^(n+1)/a(n) = log(3/2)/4. (End)
E.g.f.: 1 + 8*x*exp(x). - G. C. Greubel, Jun 07 2023