Ilya Lopatin has authored 31 sequences. Here are the ten most recent ones:
A242392
Irregular table which shows in row n the list of distinct integer arithmetic means of distinct divisors of n, or zero if n <= 2.
Original entry on oeis.org
0, 0, 2, 3, 3, 2, 3, 4, 4, 3, 5, 6, 2, 5, 6, 3, 6, 6, 2, 3, 4, 5, 6, 7, 8, 7, 4, 8, 2, 3, 4, 5, 5, 6, 7, 8, 7, 4, 8, 2, 3, 4, 6, 8, 9, 10, 3, 5, 6, 7, 8, 9, 9, 2, 4, 5, 6, 7, 8, 9, 10, 12, 10, 3, 5, 6, 7, 9, 10, 11, 12, 15, 2, 4, 5, 8, 12, 14, 6, 9, 12, 12
Offset: 1
Table starts:
0,
0,
2,
3,
3,
2, 3, 4,
4,
3, 5, 6,
2, 5, 6,
3, 6,
6,
2, 3, 4, 5, 6, 7, 8,
7,
4, 8,
2, 3, 4, 6, 8, 9, 10,
3, 5, 6, 7, 8, 9,
9,
2, 4, 5, 6, 7, 8, 9, 10, 12,
10,
3, 5, 6, 7, 9, 10, 11, 12, 15,
2, 4, 5, 8, 12, 14,
6, 9, 12,
12.
2, 3, 4, are in 6th row because:
1) (n/6 + n/2)/2 = (6/6 + 6/2)/2 = (1 + 3)/2 = 2,
2) (n/6 + n/3 + n/2 + n/1)/4 = (6/6 + 6/3 + 6/2 + 6/1)/4 = (1 + 2 + 3 + 6)/4 = 3,
3) (n/3 + n/1)/2 = (6/3 + 6/1)/2 = (2 + 6)/2 = 4.
A242310
Largest 1 < k <= A000005(n) such that the sum of k distinct divisors of n is equal to k*m for some m, or 1 if no such k exists.
Original entry on oeis.org
1, 1, 2, 2, 2, 4, 2, 2, 2, 2, 2, 5, 2, 2, 4, 3, 2, 5, 2, 6, 4, 4, 2, 7, 2, 2, 4, 5, 2, 8, 2, 4, 4, 3, 4, 8, 2, 4, 4, 7, 2, 8, 2, 6, 6, 4, 2, 11, 3, 4, 4, 5, 2, 8, 4, 8, 4, 2, 2, 12, 2, 4, 5, 6, 4, 8, 2, 6, 4, 8, 2, 11, 2, 2, 4, 4, 2, 8, 4, 2, 2, 11, 4, 4, 4
Offset: 1
a(12) = 5 because 1 + 2 + 4 + 6 + 12 = 25 = 5*5 for m = 5.
A241884
Numbers n such that n - n^2/k^2 is not prime for all k < n.
Original entry on oeis.org
1, 2, 5, 7, 9, 10, 11, 13, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 28, 29, 31, 33, 34, 35, 36, 37, 39, 40, 41, 43, 45, 46, 47, 49, 50, 51, 52, 53, 55, 57, 58, 59, 61, 63, 64, 65, 66, 67, 69, 70, 71, 73, 75, 76, 77, 78, 79, 81, 82, 83, 85, 86, 87, 88, 89, 91, 92, 93, 94, 95, 96, 97, 99, 100
Offset: 1
56 is not in the sequence because 56 - 56^2/8^2 = 7 is prime for k = 8.
-
filter:= n -> andmap(t -> not isprime(n - t^2), numtheory:-divisors(n)):
select(filter, [$1..1000]); # Robert Israel, Jul 04 2017
-
isOK(n) = fordiv(n, k, if(isprime(n-(n/k)^2), return(0))); 1
s=[]; for(n=1, 100, if(isOK(n), s=concat(s, n))); s \\ Colin Barker, May 16 2014
A241534
Number of integer arithmetic means of 2 distinct divisors of n.
Original entry on oeis.org
0, 0, 1, 1, 1, 2, 1, 3, 3, 2, 1, 7, 1, 2, 6, 6, 1, 6, 1, 7, 6, 2, 1, 16, 3, 2, 6, 7, 1, 12, 1, 10, 6, 2, 6, 18, 1, 2, 6, 16, 1, 12, 1, 7, 15, 2, 1, 29, 3, 6, 6, 7, 1, 12, 6, 16, 6, 2, 1, 34, 1, 2, 15, 15, 6, 12, 1, 7, 6, 12, 1, 39, 1, 2, 15, 7, 6, 12, 1, 29
Offset: 1
Triangle T(n, k) starts for n > 2:
2,
3,
3,
2, 4,
4,
3, 5, 6,
2, 5, 6;
where T(n, k) = the values of k such that 2k = q + g; q, g are distinct divisors of n.
a(20) = 7 because (1,5), (2,4), (2,10), (2,20), (4,10), (4,20) and (10,20) are the 7 values of (g,q) such that (g+q)/2 is an integer. - _Colin Barker_, May 10 2014
-
Table[Sum[Sum[(1 - Ceiling[(i + k)/2] + Floor[(i + k)/2]) (1 - Ceiling[n/k] + Floor[n/k]) (1 - Ceiling[n/i] + Floor[n/i]), {i, k - 1}], {k, n}], {n, 100}] (* Wesley Ivan Hurt, Oct 06 2020 *)
-
a(n) = c=0; fordiv(n, g, fordiv(n, q, if(gColin Barker, May 10 2014
Several incorrect terms corrected, and more terms added by
Colin Barker, May 10 2014
A240838
Primes p such that prime(p) + 2*p^2 is prime.
Original entry on oeis.org
2, 3, 5, 13, 41, 43, 139, 173, 227, 239, 359, 463, 541, 691, 743, 761, 821, 823, 827, 887, 1021, 1117, 1289, 1427, 1489, 1637, 1723, 1933, 1999, 2081, 2287, 2309, 2719, 2791, 2833, 2843, 2953, 3329, 3541, 3803, 3823, 3929, 4003, 4007, 4079, 4139, 4297, 4451, 4561, 4597, 4691, 4703, 4817, 4931, 4943
Offset: 1
2 is in this sequence because 2 and prime(2) + 2*2^2 = 3 + 8 = 11 are both prime.
-
[n: n in {1..5000} | IsPrime(n) and IsPrime(s) where s is (2*n^2 + NthPrime(n))];
-
Select[Prime[Range[700]],PrimeQ[Prime[#]+2#^2]&] (* Harvey P. Dale, Mar 19 2018 *)
-
isok(p) = isprime(p) && isprime(prime(p) + 2*p^2); \\ Michel Marcus, Apr 13 2014
A240842
Numbers n such that n - 2*k^2 is a prime for all k > 0 with k^2 < n/2.
Original entry on oeis.org
1, 2, 4, 5, 7, 13, 15, 21, 25, 31, 49, 55, 61, 91, 181, 199
Offset: 1
91 is in this sequence because 91-2*1^2 = 89, 91-2*2^2 = 83, 91-2*3^2 = 73, 91-2*4^2 = 59, 91-2*5^2 = 41, 91-2*6^2 = 19 where 89, 83, 73, 59, 41, 19 are all primes.
-
isOK(n) = k=1; until(k^2>=n/2, if(!isprime(n-2*k^2), return(0)); k++); 1;
for(n=1, 20000, if(isOK(n), print1(n, ", "))) \\ Colin Barker, Apr 14 2014
A242221
Numbers n such that n - n^2/m^2 and 2n - n/m are not prime for all m.
Original entry on oeis.org
1, 25, 26, 28, 33, 35, 39, 46, 50, 58, 63, 65, 77, 78, 81, 85, 86, 88, 92, 93, 94, 95, 105, 111, 116, 118, 119, 122, 123, 124, 125, 130, 133, 134, 143, 144, 145, 146, 148, 153, 155, 160, 161, 162, 165, 170, 171, 172, 176, 178, 183, 185, 186, 188, 189, 196, 202
Offset: 1
26 is in this sequence because:
1) 26 - 26^2/1^2 = -650 and 2*26 - 26/1 = 26 both not prime for m = 1,
2) 26 - 26^2/2^2 = -143 and 2*26 - 26/2 = 39 both not prime for m = 2,
3) 26 - 26^2/13^2 = 22 and 2*26 - 26/13 = 50 both not prime for m = 13,
4) 26 - 26^2/26^2 = 25 and 2*26 - 26/26 = 51 both not prime for m = 26.
-
filter:= proc(n) andmap(t -> not isprime(n - n^2/t^2) and not isprime(2*n - n/t), numtheory:-divisors(n)) end proc:
select(filter, [$1..200]); # Robert Israel, Jul 03 2017
-
filterQ[n_] := AllTrue[Divisors[n], !PrimeQ[n - n^2/#^2] && !PrimeQ[2n - n/#]&];
Select[Range[200], filterQ] (* Jean-François Alcover, Jul 27 2020, after Maple *)
-
f(n)=fordiv(n, m, if(isprime(n-n^2/m^2), return(0))); 1
g(n)=fordiv(n, m, if(isprime(2*n-n/m), return(0))); 1
for(n=1, 200, if(f(n) && g(n), print1(n, ", "))) \\ Colin Barker, May 08 2014
A236967
Expansion of (1+3*x)^2/(1-3*x)^2.
Original entry on oeis.org
1, 12, 72, 324, 1296, 4860, 17496, 61236, 209952, 708588, 2361960, 7794468, 25509168, 82904796, 267846264, 860934420, 2754990144, 8781531084, 27894275208, 88331871492, 278942752080, 878669669052, 2761533245592, 8661172452084, 27113235502176, 84728860944300
Offset: 0
Cf. Expansion of (1 + k*x)^m/(1 - k*x)^m where the values of k,m are:
......|..m = 1..|..m = 2..|..m = 3..|..m = 4..|..m = 5..|..m = 6..|
-------------------------------------------------------------------
A240882
Numbers m such that m - 4*k^2 is a prime for all k > 0 with k^2 < m/4.
Original entry on oeis.org
6, 7, 9, 11, 15, 21, 23, 27, 33, 35, 47, 77, 83, 143, 167, 227, 437
Offset: 1
21 is in this sequence because 21 - 4*1^2 = 17 and 21 - 4*2^2 = 5 are both prime.
-
n=6;Monitor[Parallelize[While[True,If[MemberQ[PrimeQ[Table[n-4*k^2,{k,1,Floor[Sqrt[n/4]]}]],False]==False,Print[n]];n++];n],n] (* J.W.L. (Jan) Eerland, Mar 17 2024 *)
-
isOK(n) = k=1; until(k^2>=n/4, if(!isprime(n-4*k^2), return(0)); k++); 1;
for(n=3, 1000000, if(isOK(n), print1(n, ", "))) \\ Colin Barker, Apr 14 2014
One missing term and one additional term from
Colin Barker, Apr 14 2014
A241204
Expansion of (1 + 2*x)^2/(1 - 2*x)^2.
Original entry on oeis.org
1, 8, 32, 96, 256, 640, 1536, 3584, 8192, 18432, 40960, 90112, 196608, 425984, 917504, 1966080, 4194304, 8912896, 18874368, 39845888, 83886080, 176160768, 369098752, 771751936, 1610612736, 3355443200, 6979321856, 14495514624, 30064771072, 62277025792
Offset: 0
-
R:=PowerSeriesRing(Integers(), 41); Coefficients(R!((1+2*x)^2/(1-2*x)^2));
-
A241204:= n->`if`(n=0, 1, 2^(n+2)*n); seq(A241204(n), n=0..20); # Wesley Ivan Hurt, Apr 22 2014
-
Table[2^(n+2)*n + Boole[n==0], {n,0,40}] (* G. C. Greubel, Jun 07 2023 *)
LinearRecurrence[{4,-4},{1,8,32},30] (* Harvey P. Dale, Jun 23 2025 *)
-
Vec((2*x+1)^2/(2*x-1)^2 + O(x^100)) \\ Colin Barker, Apr 22 2014
-
def A241204(i):
if i==0: return 1
else: return 2^(2+i)*i;
[A241204(n) for n in (0..30)] # Bruno Berselli, Apr 23 2014
Comments