cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A131995 Number of partitions of n into powers of 2 or of 3.

Original entry on oeis.org

1, 1, 2, 3, 5, 6, 9, 11, 16, 20, 26, 32, 42, 50, 62, 74, 92, 108, 131, 153, 184, 213, 251, 288, 339, 387, 448, 511, 589, 666, 761, 857, 976, 1095, 1237, 1384, 1561, 1737, 1946, 2161, 2415, 2672, 2971, 3281, 3640, 4007, 4425, 4860, 5359, 5869, 6446, 7049, 7729, 8428
Offset: 0

Views

Author

Reinhard Zumkeller, Aug 06 2007

Keywords

Examples

			a(10) = #{9+1, 8+2, 8+1+1, 4+4+2, 4+4+1+1, 4+3+3, 4+3+2+1,
4+3+1+1+1, 4+2+2+2, 4+2+2+1+1, 4+2+1+1+1+1, 4+1+1+1+1+1+1, 3+3+3+1,
3+3+2+2, 3+3+2+1+1, 3+3+1+1+1+1, 3+2+2+2+1, 3+2+2+1+1+1,
3+2+1+1+1+1+1, 3+1+1+1+1+1+1+1, 2+2+2+2+2, 2+2+2+2+1+1, 2+2+2+1+1+1+1,
2+2+1+1+1+1+1+1, 2+1+1+1+1+1+1+1+1, 1+1+1+1+1+1+1+1+1+1} = 26.
		

Crossrefs

Programs

  • Maple
    g:=(1-x)/(product((1-x^(2^k))*(1-x^(3^k)),k=0..10)): gser:=series(g,x=0,60): seq(coeff(gser,x,n),n=1..53); # Emeric Deutsch, Aug 26 2007

Formula

G.f.: (1-x)/Product_{k>=0} (1-x^(2^k))*(1-x^(3^k)). - Emeric Deutsch, Aug 26 2007

Extensions

Prepended a(0) = 1, Joerg Arndt and David A. Corneth, Sep 06 2020