cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A054896 a(n) = Sum_{k>0} floor(n/7^k).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 12, 12, 12, 12, 12, 12, 12, 13, 13, 13, 13, 13, 13
Offset: 0

Views

Author

Henry Bottomley, May 23 2000

Keywords

Comments

Exponent of the highest power of 7 dividing n!.

Examples

			  a(10^0) = 0.
  a(10^1) = 1.
  a(10^3) = 16.
  a(10^3) = 164.
  a(10^4) = 1665.
  a(10^5) = 16662.
  a(10^6) = 166664.
  a(10^7) = 1666661.
  a(10^8) = 16666662.
  a(10^9) = 166666661
		

Crossrefs

Cf. A011371 and A054861 for analogs involving powers of 2 and 3.

Programs

Formula

a(n) = floor(n/7) + floor(n/49) + floor(n/343) + floor(n/2401) + ...
a(n) = (n - A053828(n))/6.
From Hieronymus Fischer, Aug 14 2007: (Start)
a(n) = a(floor(n/7)) + floor(n/7).
a(7*n) = n + a(n).
a(n*7^m) = a(n) + n*(7^m-1)/6.
a(k*7^m) = k*(7^m-1)/6, for 0 <= k < 7, m >= 0.
Asymptotic behavior:
a(n) = n/6 + O(log(n)).
a(n+1) - a(n) = O(log(n)); this follows from the inequalities below.
a(n) <= (n-1)/6; equality holds for powers of 7.
a(n) >= (n-6)/6 - floor(log_7(n)); equality holds for n=7^m-1, m>0. -
lim inf (n/6 - a(n)) = 1/6, for n-->oo.
lim sup (n/6 - log_7(n) - a(n)) = 0, for n-->oo.
lim sup (a(n+1) - a(n) - log_7(n)) = 0, for n-->oo.
G.f.: (1/(1-x))*Sum_{k > 0} x^(7^k)/(1-x^(7^k)). (End)
Partial sums of A214411. - R. J. Mathar, Jul 08 2021
a(n) = A214411(A000142(n)). - Michel Marcus, Oct 07 2024

Extensions

Examples added by Hieronymus Fischer, Jun 06 2012

A132023 Decimal expansion of Product_{k>=0} 1-1/(2*7^k).

Original entry on oeis.org

4, 5, 8, 7, 6, 6, 7, 2, 6, 6, 9, 9, 7, 6, 8, 9, 8, 5, 0, 2, 0, 0, 0, 5, 1, 5, 3, 3, 6, 9, 7, 4, 3, 7, 2, 1, 7, 8, 2, 5, 4, 6, 6, 8, 8, 7, 1, 4, 7, 3, 1, 8, 7, 0, 0, 7, 8, 2, 4, 4, 0, 1, 3, 8, 5, 0, 6, 9, 9, 7, 4, 4, 0, 3, 2, 6, 5, 9, 3, 0, 3, 6, 5, 2, 3, 7, 8, 1, 7, 1, 0, 9, 0, 4, 0, 5, 8, 4, 7, 5, 9, 8, 2
Offset: 0

Views

Author

Hieronymus Fischer, Aug 14 2007

Keywords

Examples

			0.4587667266997689850200...
		

Crossrefs

Programs

  • Mathematica
    digits = 103; NProduct[1-1/(2*7^k), {k, 0, Infinity}, NProductFactors -> 200, WorkingPrecision -> digits+5] // N[#, digits+5]& // RealDigits[#, 10, digits]& // First (* Jean-François Alcover, Feb 18 2014 *)
    RealDigits[QPochhammer[1/2, 1/7], 10, 120][[1]] (* Amiram Eldar, May 08 2023 *)

Formula

Equals lim inf_{n->oo} Product_{k=0..floor(log_7(n))} floor(n/7^k)*7^k/n.
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^(1/2*(1+floor(log_7(n)))*floor(log_7(n))).
Equals lim inf_{n->oo} A132031(n)/n^(1+floor(log_7(n)))*7^A000217(floor(log_7(n))).
Equals 1/2*exp(-Sum_{n>0} 7^(-n)*Sum_{k|n} 1/(k*2^k)).
Equals lim inf_{n->oo} A132031(n)/A132031(n+1).
Equals Product_{n>=1} (1 - 1/A109808(n)). - Amiram Eldar, May 08 2023
Showing 1-2 of 2 results.