A132095 Denominators of expansion of e.g.f. x^2/(2*(cos(x)-1)), even powers only.
1, 6, 10, 42, 30, 22, 2730, 6, 34, 798, 330, 46, 2730, 6, 290, 14322, 510, 2, 54834, 6, 4510, 1806, 690, 94, 46410, 66, 530, 798, 174, 118, 56786730, 6, 170, 64722, 30, 1562, 140100870, 6, 2, 474, 230010, 166, 3404310, 6, 20470, 272118, 1410, 2, 900354, 6
Offset: 1
Examples
-1, 0, -1/6, 0, -1/10, 0, -5/42, 0, -7/30, 0, -15/22, 0, -7601/2730, 0.
References
- Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers , Afr. Diaspora J. Math., Volume 7, Number 2 (2008).
- J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.
Links
- Robert Israel, Table of n, a(n) for n = 1..1000
- Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers, arXiv:0708.0809 [math.CO], 2007-2008, p. 8, 2nd table.
Programs
-
Maple
A132095 := proc(n) add( 2*(-1)^i*x^(2*i)/(2*i+2)!,i=0..n/2+1) ; denom(coeftayl(-1/%,x=0,n)*n!) ; end: for n from 0 to 46 by 2 do printf("%d, ",A132095(n)) ; od: # R. J. Mathar, Oct 18 2007
-
Mathematica
A132095[n_] := (s = Sum[ 2*(-1)^i*x^(2*i)/(2*i + 2)!, {i, 0, n/2 + 1}] ; Denominator[SeriesCoefficient[-1/s, {x, 0, n}]*n!]) ; Table[ A132095[n], {n, 0, 100, 2}] (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
-
PARI
my(x='x+O('x^100), v=apply(denominator, Vec(serlaplace(x^2/(2*(cos(x)-1)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 25 2024
Formula
Asymptotic series 2*Psi(1,x) + x*Psi(2,x) ~ Sum(n>=1, (-1)^n* A132094(n)/(a(n)*x^(2*n-1)) as x -> infinity. - Robert Israel, May 27 2015
Extensions
More terms from R. J. Mathar, Oct 18 2007 and Oct 20 2009
Meaningful name from Joerg Arndt, Jan 25 2024
Comments