cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A132095 Denominators of expansion of e.g.f. x^2/(2*(cos(x)-1)), even powers only.

Original entry on oeis.org

1, 6, 10, 42, 30, 22, 2730, 6, 34, 798, 330, 46, 2730, 6, 290, 14322, 510, 2, 54834, 6, 4510, 1806, 690, 94, 46410, 66, 530, 798, 174, 118, 56786730, 6, 170, 64722, 30, 1562, 140100870, 6, 2, 474, 230010, 166, 3404310, 6, 20470, 272118, 1410, 2, 900354, 6
Offset: 1

Views

Author

Jonathan Vos Post, Aug 09 2007

Keywords

Comments

Numerators and denominators given only for even n (odd n have numerators = 0).

Examples

			-1, 0, -1/6, 0, -1/10, 0, -5/42, 0, -7/30, 0, -15/22, 0, -7601/2730, 0.
		

References

  • Hector Blandin and Rafael Diaz, Compositional Bernoulli numbers , Afr. Diaspora J. Math., Volume 7, Number 2 (2008).
  • J. Riordan, Combinatorial Identities, Wiley, 1968, p. 199. See Table 3.3.

Crossrefs

Numerators are A132094.

Programs

  • Maple
    A132095 := proc(n) add( 2*(-1)^i*x^(2*i)/(2*i+2)!,i=0..n/2+1) ; denom(coeftayl(-1/%,x=0,n)*n!) ; end: for n from 0 to 46 by 2 do printf("%d, ",A132095(n)) ; od: # R. J. Mathar, Oct 18 2007
  • Mathematica
    A132095[n_] := (s = Sum[ 2*(-1)^i*x^(2*i)/(2*i + 2)!, {i, 0, n/2 + 1}] ; Denominator[SeriesCoefficient[-1/s, {x, 0, n}]*n!]) ;
    Table[ A132095[n], {n, 0, 100, 2}] (* Jean-François Alcover, Nov 24 2017, after R. J. Mathar *)
  • PARI
    my(x='x+O('x^100), v=apply(denominator, Vec(serlaplace(x^2/(2*(cos(x)-1)))))); vector(#v\2, k, v[2*k-1]) \\ Michel Marcus, Jan 25 2024

Formula

Asymptotic series 2*Psi(1,x) + x*Psi(2,x) ~ Sum(n>=1, (-1)^n* A132094(n)/(a(n)*x^(2*n-1)) as x -> infinity. - Robert Israel, May 27 2015

Extensions

More terms from R. J. Mathar, Oct 18 2007 and Oct 20 2009
Meaningful name from Joerg Arndt, Jan 25 2024