A132099
Denominators of Blandin-Diaz compositional Bernoulli numbers (B^Z^2)_1,n.
Original entry on oeis.org
1, 8, 432, 144, 324000, 64800, 16669800
Offset: 0
1, -1/8, 11/432, 1/144, -217/324000, -157/64800, -21503/16669800.
A133002
Numerators of Blandin-Diaz compositional Bernoulli numbers (B^S)_1,n.
Original entry on oeis.org
1, -1, 5, -1, 139, -1, 859, 71, -9769, 233, -6395527, 145069, -304991568097, -95164619917, 119780081383, -3046785293, 4002469707564917, -102407337854027, 1286572077762833639, 219276930957009857, -20109624681057406222913, 1651690537394493957719
Offset: 0
1, -1/4, 5/72, -1/48, 139/21600, -1/540, 859/2540160, 71/483840, -9769/36288000 (corrected by _Daniel Suteu_, Feb 24 2018).
Corrected the sign of a(0) and a(3) by
Daniel Suteu, Feb 24 2018
A133003
Denominators of Blandin-Diaz compositional Bernoulli numbers (B^S)_1,n.
Original entry on oeis.org
1, 4, 72, 48, 21600, 540, 2540160, 483840, 36288000, 896000, 31614105600, 1149603840, 7139902049280000, 2196892938240000, 941525544960000, 15216574464000, 16326052949606400000, 443241256550400000, 11991344662654156800000, 1100420292929126400000
Offset: 0
1, -1/4, 5/72, -1/48, 139/21600, -1/540, 859/2540160, 71/483840, -9769/36288000 (corrected by _Daniel Suteu_, Feb 24 2018).
-
f[0] = 1; f[n_] := f[n] = -Sum[f[k]/((n - k + 1)!)^2, {k, 0, n - 1}]; a[n_] := Denominator[f[n]*n!]; Table[a[n], {n, 0, 19}] (* Jean-François Alcover, Feb 25 2018, after Daniel Suteu *)
Showing 1-3 of 3 results.
Comments